Advertisement

Neuropsychology Review

, Volume 28, Issue 4, pp 509–533 | Cite as

Cognitive Deficits in Psychotic Disorders: A Lifespan Perspective

  • Julia M. SheffieldEmail author
  • Nicole R. Karcher
  • Deanna M. Barch
Review

Abstract

Individuals with disorders that include psychotic symptoms (i.e. psychotic disorders) experience broad cognitive impairments in the chronic state, indicating a dimension of abnormality associated with the experience of psychosis. These impairments negatively impact functional outcome, contributing to the disabling nature of schizophrenia, bipolar disorder, and psychotic depression. The robust and reliable nature of cognitive deficits has led researchers to explore the timing and profile of impairments, as this may elucidate different neurodevelopmental patterns in individuals who experience psychosis. Here, we review the literature on cognitive deficits across the life span of individuals with psychotic disorder and psychotic-like experiences, highlighting the dimensional nature of both psychosis and cognitive ability. We identify premorbid generalized cognitive impairment in schizophrenia that worsens throughout development, and stabilizes by the first-episode of psychosis, suggesting a neurodevelopmental course. Research in affective psychosis is less clear, with mixed evidence regarding premorbid deficits, but a fairly reliable generalized deficit at first-episode, which appears to worsen into the chronic state. In general, cognitive impairments are most severe in schizophrenia, intermediate in bipolar disorder, and the least severe in psychotic depression. In all groups, cognitive deficits are associated with poorer functional outcome. Finally, while the generalized deficit is the clearest and most reliable signal, data suggests specific deficits in verbal memory across all groups, specific processing speed impairments in schizophrenia and executive functioning impairments in bipolar disorder. Cognitive deficits are a core feature of psychotic disorders that provide a window into understanding developmental course and risk for psychosis.

Keywords

Psychosis Cognitive Impairment Development Schizophrenia Bipolar Disorder Depression 

References

  1. Addington, J., & Addington, D. (2005). Patterns of premorbid functioning in first episode psychosis: relationship to 2-year outcome. Acta Psychiatrica Scandinavica, 112(1), 40–46.  https://doi.org/10.1111/j.1600-0447.2005.00511.x.Google Scholar
  2. Albus, M., Hubmann, W., Wahlheim, C., Sobizack, N., Franz, U., & Mohr, F. (1996). Contrasts in neuropsychological test profile between patients with first-episode schizophrenia and first-episode affective disorders. Acta Psychiatrica Scandinavica, 94(2), 87–93.Google Scholar
  3. Aminoff, S. R., Hellvin, T., Lagerberg, T. V., Berg, A. O., Andreassen, O. A., & Melle, I. (2013). Neurocognitive features in subgroups of bipolar disorder. Bipolar Disorders, 15(3), 272–283.  https://doi.org/10.1111/bdi.12061.Google Scholar
  4. An, S. K., Kang, J. I., Park, J. Y., Kim, K. R., Lee, S. Y., & Lee, E. (2010). Attribution bias in ultra-high risk for psychosis and first-episode schizophrenia. Schizophrenia Research, 118(1-3), 54–61.  https://doi.org/10.1016/j.schres.2010.01.025.Google Scholar
  5. Ancin, I., Cabranes, J. A., Santos, J. L., Sanchez-Morla, E., & Barabash, A. (2013). Executive deficits: a continuum schizophrenia-bipolar disorder or specific to schizophrenia? Journal of Psychiatric Research, 47(11), 1564–1571.  https://doi.org/10.1016/j.jpsychires.2013.07.008.Google Scholar
  6. Ang, Y. G., & Tan, H. Y. (2004). Academic deterioration prior to first episode schizophrenia in young Singaporean males. Psychiatry Research, 121(3), 303–307.Google Scholar
  7. Aronson, T. A., Shukla, S., Gujavarty, K., Hoff, A., DiBuono, M., & Khan, E. (1988). Relapse in delusional depression: a retrospective study of the course of treatment. Comprehensive Psychiatry, 29(1), 12–21.Google Scholar
  8. Arts, B., Simons, C. J., & Os, J. (2013). Evidence for the impact of the CACNA1C risk allele rs1006737 on 2-year cognitive functioning in bipolar disorder. Psychiatric Genetics, 23(1), 41–42.  https://doi.org/10.1097/YPG.0b013e328358641c.Google Scholar
  9. Aylward, E., Walker, E., & Bettes, B. (1984). Intelligence in schizophrenia: meta-analysis of the research. Schizophrenia Bulletin, 10(3), 430–459.Google Scholar
  10. Ayres, A. M., Busatto, G. F., Menezes, P. R., Schaufelberger, M. S., Coutinho, L., Murray, R. M., et al. (2007). Cognitive deficits in first-episode psychosis: a population-based study in Sao Paulo, Brazil. Schizophrenia Research, 90(1-3), 338–343.  https://doi.org/10.1016/j.schres.2006.09.026.Google Scholar
  11. Bachman, P., Reichenberg, A., Rice, P., Woolsey, M., Chaves, O., Martinez, D., et al. (2010). Deconstructing processing speed deficits in schizophrenia: application of a parametric digit symbol coding test. Schizophrenia Research, 118(1-3), 6–11.  https://doi.org/10.1016/j.schres.2010.02.1029.Google Scholar
  12. Backman, L., Lindenberger, U., Li, S. C., & Nyberg, L. (2010). Linking cognitive aging to alterations in dopamine neurotransmitter functioning: recent data and future avenues. Neuroscience and Biobehavioral Reviews, 34(5), 670–677.  https://doi.org/10.1016/j.neubiorev.2009.12.008.Google Scholar
  13. Baddeley, A. (2000). The episodic buffer: a new component of working memory? Trends in Cognitive Sciences, 4(11), 417–423.Google Scholar
  14. Barch, D. M., & Ceaser, A. (2012). Cognition in schizophrenia: core psychological and neural mechanisms. Trends in Cognitive Sciences, 16(1), 27–34.  https://doi.org/10.1016/j.tics.2011.11.015.Google Scholar
  15. Barch, D. M., & Dowd, E. C. (2010). Goal representations and motivational drive in schizophrenia: the role of prefrontal-striatal interactions. Schizophrenia Bulletin, 36(5), 919–934.  https://doi.org/10.1093/schbul/sbq068.Google Scholar
  16. Barch, D. M., & Sheffield, J. M. (2014). Cognitive impairments in psychotic disorders: common mechanisms and measurement. World Psychiatry, 13(3), 224–232.  https://doi.org/10.1002/wps.20145.Google Scholar
  17. Barch, D. M., Carter, C. S., MacDonald 3rd, A. W., Braver, T. S., & Cohen, J. D. (2003). Context-processing deficits in schizophrenia: diagnostic specificity, 4-week course, and relationships to clinical symptoms. Journal of Abnormal Psychology, 112(1), 132–143.Google Scholar
  18. Barnett, J. H., McDougall, F., Xu, M. K., Croudace, T. J., Richards, M., & Jones, P. B. (2012). Childhood cognitive function and adult psychopathology: associations with psychotic and non-psychotic symptoms in the general population. The British Journal of Psychiatry, 201, 124–130.  https://doi.org/10.1192/bjp.bp.111.102053.Google Scholar
  19. Barrett, S. L., Mulholland, C. C., Cooper, S. J., & Rushe, T. M. (2009). Patterns of neurocognitive impairment in first-episode bipolar disorder and schizophrenia. The British Journal of Psychiatry, 195(1), 67–72.  https://doi.org/10.1192/bjp.bp.108.054874.Google Scholar
  20. Bechdolf, A., Thompson, A., Nelson, B., Cotton, S., Simmons, M. B., Amminger, G. P., et al. (2010). Experience of trauma and conversion to psychosis in an ultra-high-risk (prodromal) group. Acta Psychiatrica Scandinavica, 121(5), 377–384.  https://doi.org/10.1111/j.1600-0447.2010.01542.x.Google Scholar
  21. Belanoff, J. K., Kalehzan, M., Sund, B., Fleming Ficek, S. K., & Schatzberg, A. F. (2001). Cortisol activity and cognitive changes in psychotic major depression. The American Journal of Psychiatry, 158(10), 1612–1616.  https://doi.org/10.1176/appi.ajp.158.10.1612.Google Scholar
  22. Bell, M. D., & Bryson, G. (2001). Work rehabilitation in schizophrenia: does cognitive impairment limit improvement? Schizophrenia Bulletin, 27(2), 269–279.Google Scholar
  23. Bell, M. D., Lysaker, P. H., Milstein, R. M., & Beam-Goulet, J. L. (1994). Concurrent validity of the cognitive component of schizophrenia: relationship of PANSS scores to neuropsychological assessments. Psychiatry Research, 54(1), 51–58.Google Scholar
  24. Bergh, S., Hjorthoj, C., Sorensen, H. J., Fagerlund, B., Austin, S., Secher, R. G., et al. (2016). Predictors and longitudinal course of cognitive functioning in schizophrenia spectrum disorders, 10years after baseline: The OPUS study. Schizophrenia Research, 175(1-3), 57–63.  https://doi.org/10.1016/j.schres.2016.03.025.Google Scholar
  25. Berman, I., Viegner, B., Merson, A., Allan, E., Pappas, D., & Green, A. I. (1997). Differential relationships between positive and negative symptoms and neuropsychological deficits in schizophrenia. Schizophrenia Research, 25(1), 1–10.  https://doi.org/10.1016/S0920-9964(96)00098-9.Google Scholar
  26. Bonnin, C. M., Torrent, C., Arango, C., Amann, B. L., Sole, B., Gonzalez-Pinto, A., et al. (2016). Functional remediation in bipolar disorder: 1-year follow-up of neurocognitive and functional outcome. The British Journal of Psychiatry, 208(1), 87–93.  https://doi.org/10.1192/bjp.bp.114.162123.Google Scholar
  27. Bora, E. (2015). Neurodevelopmental origin of cognitive impairment in schizophrenia. Psychological Medicine, 45(1), 1–9.  https://doi.org/10.1017/s0033291714001263.Google Scholar
  28. Bora, E. (2017). Neurocognitive features in clinical subgroups of bipolar disorder: A meta-analysis. Journal of Affective Disorders, 229, 125–134.  https://doi.org/10.1016/j.jad.2017.12.057. Google Scholar
  29. Bora, E., & Ozerdem, A. (2017). Meta-analysis of longitudinal studies of cognition in bipolar disorder: comparison with healthy controls and schizophrenia. Psychological Medicine, 47(16), 2753–2766.  https://doi.org/10.1017/S0033291717001490.Google Scholar
  30. Bora, E., & Pantelis, C. (2015). Meta-analysis of Cognitive Impairment in First-Episode Bipolar Disorder: Comparison With First-Episode Schizophrenia and Healthy Controls. Schizophrenia Bulletin, 41(5), 1095–1104.  https://doi.org/10.1093/schbul/sbu198.Google Scholar
  31. Bora, E., Vahip, S., Akdeniz, F., Gonul, A. S., Eryavuz, A., Ogut, M., et al. (2007). The effect of previous psychotic mood episodes on cognitive impairment in euthymic bipolar patients. Bipolar Disorders, 9(5), 468–477.  https://doi.org/10.1111/j.1399-5618.2007.00469.x.Google Scholar
  32. Bora, E., Yucel, M., & Pantelis, C. (2009). Cognitive endophenotypes of bipolar disorder: a meta-analysis of neuropsychological deficits in euthymic patients and their first-degree relatives. Journal of Affective Disorders, 113(1-2), 1–20.  https://doi.org/10.1016/j.jad.2008.06.009.Google Scholar
  33. Bora, E., Yucel, M., & Pantelis, C. (2010a). Cognitive impairment in affective psychoses: a meta-analysis. Schizophrenia Bulletin, 36(1), 112–125.  https://doi.org/10.1093/schbul/sbp093.Google Scholar
  34. Bora, E., Yucel, M., & Pantelis, C. (2010b). Neurocognitive markers of psychosis in bipolar disorder: a meta-analytic study. Journal of Affective Disorders, 127(1-3), 1–9.  https://doi.org/10.1016/j.jad.2010.02.117.Google Scholar
  35. Bora, E., Harrison, B. J., Yücel, M., & Pantelis, C. (2013). Cognitive impairment in euthymic major depressive disorder: a meta-analysis. Psychological medicine, 43(10), 2017–2026.Google Scholar
  36. Bowie, C. R., Reichenberg, A., Patterson, T. L., Heaton, R. K., & Harvey, P. D. (2006). Determinants of real-world functional performance in schizophrenia subjects: correlations with cognition, functional capacity, and symptoms. The American Journal of Psychiatry, 163(3), 418–425.  https://doi.org/10.1176/appi.ajp.163.3.418.Google Scholar
  37. Bozikas, V. P., Kosmidis, M. H., Giannakou, M., Kechayas, P., Tsotsi, S., Kiosseoglou, G., et al. (2014). Controlled shifting of attention in schizophrenia and bipolar disorder through a dichotic listening paradigm. Comprehensive Psychiatry, 55(5), 1212–1219.  https://doi.org/10.1016/j.comppsych.2014.02.014.Google Scholar
  38. Brebion, G., David, A. S., Bressan, R. A., & Pilowsky, L. S. (2006). Processing speed: a strong predictor of verbal memory performance in schizophrenia. Journal of Clinical and Experimental Neuropsychology, 28(3), 370–382.  https://doi.org/10.1080/13803390590935390.Google Scholar
  39. Brewer, W. J., Francey, S. M., Wood, S. J., Jackson, H. J., Pantelis, C., Phillips, L. J., et al. (2005). Memory impairments identified in people at ultra-high risk for psychosis who later develop first-episode psychosis. The American Journal of Psychiatry, 162(1), 71–78.  https://doi.org/10.1176/appi.ajp.162.1.71.Google Scholar
  40. Bryson, G., & Bell, M. D. (2003). Initial and final work performance in schizophrenia: cognitive and symptom predictors. The Journal of Nervous and Mental Disease, 191(2), 87–92.  https://doi.org/10.1097/01.NMD.0000050937.06332.3C.Google Scholar
  41. Bryzgalov, L. O., Korbolina, E. E., Brusentsov, I. I., Leberfarb, E. Y., Bondar, N. P., & Merkulova, T. I. (2018). Novel functional variants at the GWAS-implicated loci might confer risk to major depressive disorder. bipolar affective disorder and schizophrenia. BMC Neurosci, 19(Suppl 1), 22.  https://doi.org/10.1186/s12868-018-0414-3. Google Scholar
  42. Cannon, M., Jones, P., Huttunen, M. O., Tanskanen, A., Huttunen, T., Rabe-Hesketh, S., et al. (1999). School performance in Finnish children and later development of schizophrenia: a population-based longitudinal study. Archives of General Psychiatry, 56(5), 457–463.Google Scholar
  43. Cannon, M., Caspi, A., Moffitt, T. E., Harrington, H., Taylor, A., Murray, R. M., et al. (2002). Evidence for early-childhood, pan-developmental impairment specific to schizophreniform disorder: results from a longitudinal birth cohort. Archives of General Psychiatry, 59(5), 449–456.Google Scholar
  44. Cannon, M., Moffitt, T. E., Caspi, A., Murray, R. M., Harrington, H., & Poulton, R. (2006). Neuropsychological performance at the age of 13 years and adult schizophreniform disorder: prospective birth cohort study. The British Journal of Psychiatry, 189, 463–464.  https://doi.org/10.1192/bjp.bp.105.020552. Google Scholar
  45. Carrion, R. E., McLaughlin, D., Goldberg, T. E., Auther, A. M., Olsen, R. H., Olvet, D. M., et al. (2013). Prediction of functional outcome in individuals at clinical high risk for psychosis. JAMA Psychiatry, 70(11), 1133–1142.  https://doi.org/10.1001/jamapsychiatry.2013.1909.Google Scholar
  46. Chemerinski, E., Triebwasser, J., Roussos, P., & Siever, L. J. (2013). Schizotypal personality disorder. Journal of Personality Disorders, 27(5), 652–679.  https://doi.org/10.1521/pedi_2012_26_053.Google Scholar
  47. Cornblatt, B., Obuchowski, M., Roberts, S., Pollack, S., & Erlenmeyer-Kimling, L. (1999). Cognitive and behavioral precursors of schizophrenia. Development and Psychopathology, 11(3), 487–508.Google Scholar
  48. Coryell, W., Endicott, J., & Keller, M. (1987). The importance of psychotic features to major depression: course and outcome during a 2-year follow-up. Acta Psychiatrica Scandinavica, 75(1), 78–85.Google Scholar
  49. Crow, T. J., Done, D. J., & Sacker, A. (1995). Childhood precursors of psychosis as clues to its evolutionary origins. European Archives of Psychiatry and Clinical Neuroscience, 245(2), 61–69.Google Scholar
  50. Daban, C., Martinez-Aran, A., Torrent, C., Tabares-Seisdedos, R., Balanza-Martinez, V., Salazar-Fraile, J., et al. (2006). Specificity of cognitive deficits in bipolar disorder versus schizophrenia. A systematic review. Psychother Psychosom, 75(2), 72–84.  https://doi.org/10.1159/000090891. Google Scholar
  51. Daglas, R., Yucel, M., Cotton, S., Allott, K., Hetrick, S., & Berk, M. (2015). Cognitive impairment in first-episode mania: a systematic review of the evidence in the acute and remission phases of the illness. Int J Bipolar Disord, 3, 9.  https://doi.org/10.1186/s40345-015-0024-2.Google Scholar
  52. Daglas, R., Allott, K., Yucel, M., Pantelis, C., Macneil, C. A., Berk, M., et al. (2016). The trajectory of cognitive functioning following first episode mania: A 12-month follow-up study. The Australian and New Zealand Journal of Psychiatry, 50(12), 1186–1197.  https://doi.org/10.1177/0004867415622272.Google Scholar
  53. Davidson, M., Galderisi, S., Weiser, M., Werbeloff, N., Fleischhacker, W. W., Keefe, R. S., et al. (2009). Cognitive effects of antipsychotic drugs in first-episode schizophrenia and schizophreniform disorder: a randomized, open-label clinical trial (EUFEST). The American Journal of Psychiatry, 166(6), 675–682.  https://doi.org/10.1176/appi.ajp.2008.08060806.Google Scholar
  54. Demant, K. M., Vinberg, M., Kessing, L. V., & Miskowiak, K. W. (2015). Effects of Short-Term Cognitive Remediation on Cognitive Dysfunction in Partially or Fully Remitted Individuals with Bipolar Disorder: Results of a Randomised Controlled Trial. PLoS One, 10(6), e0127955.  https://doi.org/10.1371/journal.pone.0127955.Google Scholar
  55. Demmo, C., Lagerberg, T. V., Aminoff, S. R., Hellvin, T., Kvitland, L. R., Simonsen, C., et al. (2016). History of psychosis and previous episodes as potential explanatory factors for neurocognitive impairment in first-treatment bipolar I disorder. Bipolar Disorders, 18(2), 136–147.  https://doi.org/10.1111/bdi.12377.Google Scholar
  56. Demmo, C., Lagerberg, T. V., Aminoff, S. R., Hellvin, T., Kvitland, L. R., Simonsen, C., et al. (2017). Course of neurocognitive function in first treatment bipolar I disorder: One-year follow-up study. Psychiatry Research, 249, 286–292.  https://doi.org/10.1016/j.psychres.2016.12.048.Google Scholar
  57. Dickerson, F., Boronow, J. J., Ringel, N., & Parente, F. (1999). Social functioning and neurocognitive deficits in outpatients with schizophrenia: a 2-year follow-up. Schizophrenia Research, 37(1), 13–20.Google Scholar
  58. Dickerson, F., Stallings, C., Vaughan, C., Origoni, A., Khushalani, S., Dickinson, D., et al. (2011). Cognitive functioning in recent onset psychosis. The Journal of Nervous and Mental Disease, 199(6), 367–371.  https://doi.org/10.1097/NMD.0b013e31821cd0ff.Google Scholar
  59. Dickinson, D., Ramsey, M. E., & Gold, J. M. (2007). Overlooking the obvious: a meta-analytic comparison of digit symbol coding tasks and other cognitive measures in schizophrenia. Archives of General Psychiatry, 64(5), 532–542.  https://doi.org/10.1001/archpsyc.64.5.532.Google Scholar
  60. Dickinson, D., Ragland, J. D., Gold, J. M., & Gur, R. C. (2008). General and specific cognitive deficits in schizophrenia: Goliath defeats David? Biological Psychiatry, 64(9), 823–827.  https://doi.org/10.1016/j.biopsych.2008.04.005.Google Scholar
  61. Dickson, H., Laurens, K. R., Cullen, A. E., & Hodgins, S. (2012). Meta-analyses of cognitive and motor function in youth aged 16 years and younger who subsequently develop schizophrenia. Psychological Medicine, 42(4), 743–755.  https://doi.org/10.1017/S0033291711001693.Google Scholar
  62. Dickson, H., Cullen, A. E., Reichenberg, A., Hodgins, S., Campbell, D. D., Morris, R. G., et al. (2014). Cognitive impairment among children at-risk for schizophrenia. Journal of Psychiatric Research, 50, 92–99.  https://doi.org/10.1016/j.jpsychires.2013.12.003.Google Scholar
  63. Dinn, W. M., Harris, C. L., Aycicegi, A., Greene, P., & Andover, M. S. (2002). Positive and negative schizotypy in a student sample: neurocognitive and clinical correlates. Schizophrenia Research, 56(1-2), 171–185.Google Scholar
  64. Donaldson, S., Goldstein, L. H., Landau, S., Raymont, V., & Frangou, S. (2003). The Maudsley Bipolar Disorder Project: the effect of medication, family history, and duration of illness on IQ and memory in bipolar I disorder. The Journal of Clinical Psychiatry, 64(1), 86–93.Google Scholar
  65. Elie, D., Poirier, M., Chianetta, J., Durand, M., Gregoire, C., & Grignon, S. (2010). Cognitive effects of antipsychotic dosage and polypharmacy: a study with the BACS in patients with schizophrenia and schizoaffective disorder. Journal of Psychopharmacology, 24(7), 1037–1044.  https://doi.org/10.1177/0269881108100777.Google Scholar
  66. Elshahawi, H. H., Essawi, H., Rabie, M. A., Mansour, M., Beshry, Z. A., & Mansour, A. N. (2011). Cognitive functions among euthymic bipolar I patients after a single manic episode versus recurrent episodes. Journal of Affective Disorders, 130(1-2), 180–191.  https://doi.org/10.1016/j.jad.2010.10.027.Google Scholar
  67. Erlenmeyer-Kimling, L., Rock, D., Roberts, S. A., Janal, M., Kestenbaum, C., Cornblatt, B., et al. (2000). Attention, memory, and motor skills as childhood predictors of schizophrenia-related psychoses: the New York High-Risk Project. The American Journal of Psychiatry, 157(9), 1416–1422.  https://doi.org/10.1176/appi.ajp.157.9.1416.Google Scholar
  68. Evans, J. D., Bond, G. R., Meyer, P. S., Kim, H. W., Lysaker, P. H., Gibson, P. J., et al. (2004). Cognitive and clinical predictors of success in vocational rehabilitation in schizophrenia. Schizophrenia Research, 70(2-3), 331–342.  https://doi.org/10.1016/j.schres.2004.01.011.Google Scholar
  69. Falkai, P., Malchow, B., & Schmitt, A. (2017). Aerobic exercise and its effects on cognition in schizophrenia. Current Opinion in Psychiatry, 30(3), 171–175.  https://doi.org/10.1097/YCO.0000000000000326.Google Scholar
  70. Fatouros-Bergman, H., Cervenka, S., Flyckt, L., Edman, G., & Farde, L. (2014). Meta-analysis of cognitive performance in drug-naive patients with schizophrenia. Schizophrenia Research, 158(1-3), 156–162.  https://doi.org/10.1016/j.schres.2014.06.034.Google Scholar
  71. Firth, J., Stubbs, B., Rosenbaum, S., Vancampfort, D., Malchow, B., Schuch, F., et al. (2017). Aerobic Exercise Improves Cognitive Functioning in People With Schizophrenia: A Systematic Review and Meta-Analysis. Schizophrenia Bulletin, 43(3), 546–556.  https://doi.org/10.1093/schbul/sbw115. Google Scholar
  72. Fleming, S. K., Blasey, C., & Schatzberg, A. F. (2004). Neuropsychological correlates of psychotic features in major depressive disorders: a review and meta-analysis. Journal of Psychiatric Research, 38(1), 27–35.Google Scholar
  73. Flowers, S. A., Ryan, K. A., Lai, Z., McInnis, M. G., & Ellingrod, V. L. (2016). Interaction between COMT rs5993883 and second generation antipsychotics is linked to decreases in verbal cognition and cognitive control in bipolar disorder. BMC Psychol, 4, 14.  https://doi.org/10.1186/s40359-016-0118-3.Google Scholar
  74. Francey, S. M., Jackson, H. J., Phillips, L. J., Wood, S. J., Yung, A. R., & McGorry, P. D. (2005). Sustained attention in young people at high risk of psychosis does not predict transition to psychosis. Schizophrenia Research, 79(1), 127–136.  https://doi.org/10.1016/j.schres.2005.06.023.Google Scholar
  75. Frydecka, D., Eissa, A. M., Hewedi, D. H., Ali, M., Drapala, J., Misiak, B., et al. (2014). Impairments of working memory in schizophrenia and bipolar disorder: the effect of history of psychotic symptoms and different aspects of cognitive task demands. Frontiers in Behavioral Neuroscience, 8, 416.  https://doi.org/10.3389/fnbeh.2014.00416.Google Scholar
  76. Fuller, R., Nopoulos, P., Arndt, S., O'Leary, D., Ho, B. C., & Andreasen, N. C. (2002). Longitudinal assessment of premorbid cognitive functioning in patients with schizophrenia through examination of standardized scholastic test performance. The American Journal of Psychiatry, 159(7), 1183–1189.  https://doi.org/10.1176/appi.ajp.159.7.1183.Google Scholar
  77. Fusar-Poli, P., Deste, G., Smieskova, R., Barlati, S., Yung, A. R., Howes, O., et al. (2012). Cognitive functioning in prodromal psychosis: a meta-analysis. Archives of General Psychiatry, 69(6), 562–571.  https://doi.org/10.1001/archgenpsychiatry.2011.1592. Google Scholar
  78. Glahn, D. C., Bearden, C. E., Barguil, M., Barrett, J., Reichenberg, A., Bowden, C. L., et al. (2007). The neurocognitive signature of psychotic bipolar disorder. Biological Psychiatry, 62(8), 910–916.  https://doi.org/10.1016/j.biopsych.2007.02.001.Google Scholar
  79. Glassman, A. H., & Roose, S. P. (1981). Delusional depression. A distinct clinical entity? Archives of General Psychiatry, 38(4), 424–427.Google Scholar
  80. Glosser, G., Butters, N., & Kaplan, E. (1977). Visuoperceptual processes in brain damaged patients on the digit symbol substitution test. The International Journal of Neuroscience, 7(2), 59–66.Google Scholar
  81. Goghari, V. M., Brett, C., Tabraham, P., Johns, L., Valmaggia, L., Broome, M., et al. (2014). Spatial working memory ability in individuals at ultra high risk for psychosis. Journal of Psychiatric Research, 50, 100–105.  https://doi.org/10.1016/j.jpsychires.2013.12.010.Google Scholar
  82. Gold, J. M., Goldberg, R. W., McNary, S. W., Dixon, L. B., & Lehman, A. F. (2002). Cognitive correlates of job tenure among patients with severe mental illness. The American Journal of Psychiatry, 159(8), 1395–1402.  https://doi.org/10.1176/appi.ajp.159.8.1395.Google Scholar
  83. Gold, J. M., Barch, D. M., Carter, C. S., Dakin, S., Luck, S. J., MacDonald 3rd, A. W., et al. (2012). Clinical, functional, and intertask correlations of measures developed by the Cognitive Neuroscience Test Reliability and Clinical Applications for Schizophrenia Consortium. Schizophrenia Bulletin, 38(1), 144–152.  https://doi.org/10.1093/schbul/sbr142.Google Scholar
  84. Goldberg, T. E., Hyde, T. M., Kleinman, J. E., & Weinberger, D. R. (1993). Course of schizophrenia: neuropsychological evidence for a static encephalopathy. Schizophrenia Bulletin, 19(4), 797–804.Google Scholar
  85. Gomez, R. G., Fleming, S. H., Keller, J., Flores, B., Kenna, H., DeBattista, C., et al. (2006). The neuropsychological profile of psychotic major depression and its relation to cortisol. Biological Psychiatry, 60(5), 472–478.  https://doi.org/10.1016/j.biopsych.2005.11.010.Google Scholar
  86. Goodall, J., Fisher, C., Hetrick, S., Phillips, L., Parrish, E. M., & Allott, K. (2018). Neurocognitive Functioning in Depressed Young People: A Systematic Review and Meta-Analysis. Neuropsychology Review, 28(2), 216–231.  https://doi.org/10.1007/s11065-018-9373-9.Google Scholar
  87. Goodwin, G. M., Martinez-Aran, A., Glahn, D. C., & Vieta, E. (2008). Cognitive impairment in bipolar disorder: neurodevelopment or neurodegeneration? An ECNP expert meeting report. European Neuropsychopharmacology, 18(11), 787–793.  https://doi.org/10.1016/j.euroneuro.2008.07.005.Google Scholar
  88. Green, M. F., Kern, R. S., & Heaton, R. K. (2004). Longitudinal studies of cognition and functional outcome in schizophrenia: implications for MATRICS. Schizophrenia Research, 72(1), 41–51.  https://doi.org/10.1016/j.schres.2004.09.009.Google Scholar
  89. Greenland-White, S. E., Ragland, J. D., Niendam, T. A., Ferrer, E., & Carter, C. S. (2017). Episodic memory functions in first episode psychosis and clinical high risk individuals. Schizophrenia Research, 188, 151–157.  https://doi.org/10.1016/j.schres.2017.01.035.Google Scholar
  90. Guerra, A., Fearon, P., Sham, P., Jones, P., Lewis, S., Mata, I., et al. (2002). The relationship between predisposing factors, premorbid function and symptom dimensions in psychosis: an integrated approach. European Psychiatry, 17(6), 311–320.Google Scholar
  91. Gur, R. C., Calkins, M. E., Satterthwaite, T. D., Ruparel, K., Bilker, W. B., Moore, T. M., et al. (2014). Neurocognitive growth charting in psychosis spectrum youths. JAMA Psychiatry, 71(4), 366–374.  https://doi.org/10.1001/jamapsychiatry.2013.4190.Google Scholar
  92. Harris, M. S., Reilly, J. L., Thase, M. E., Keshavan, M. S., & Sweeney, J. A. (2009). Response suppression deficits in treatment-naive first-episode patients with schizophrenia, psychotic bipolar disorder and psychotic major depression. Psychiatry Research, 170(2-3), 150–156.  https://doi.org/10.1016/j.psychres.2008.10.031.Google Scholar
  93. Harvey, P. D., Koren, D., Reichenberg, A., & Bowie, C. R. (2006). Negative symptoms and cognitive deficits: what is the nature of their relationship? Schizophrenia Bulletin, 32(2), 250–258.  https://doi.org/10.1093/schbul/sbj011.Google Scholar
  94. Hawkins, K. A., Addington, J., Keefe, R. S., Christensen, B., Perkins, D. O., Zipurksy, R., et al. (2004). Neuropsychological status of subjects at high risk for a first episode of psychosis. Schizophrenia Research, 67(2-3), 115–122.  https://doi.org/10.1016/j.schres.2003.08.007.Google Scholar
  95. Heinrichs, R. W., & Zakzanis, K. K. (1998). Neurocognitive deficit in schizophrenia: a quantitative review of the evidence. Neuropsychology, 12(3), 426–445.Google Scholar
  96. Helling, I., Ohman, A., & Hultman, C. M. (2003). School achievements and schizophrenia: a case-control study. Acta Psychiatrica Scandinavica, 108(5), 381–386.Google Scholar
  97. Hellvin, T., Sundet, K., Simonsen, C., Aminoff, S. R., Lagerberg, T. V., Andreassen, O. A., et al. (2012). Neurocognitive functioning in patients recently diagnosed with bipolar disorder. Bipolar Disorders, 14(3), 227–238.  https://doi.org/10.1111/j.1399-5618.2012.01004.x.Google Scholar
  98. Heydebrand, G., Weiser, M., Rabinowitz, J., Hoff, A. L., DeLisi, L. E., & Csernansky, J. G. (2004). Correlates of cognitive deficits in first episode schizophrenia. Schizophrenia Research, 68(1), 1–9.  https://doi.org/10.1016/S0920-9964(03)00097-5. Google Scholar
  99. Hill, S. K., Beers, S. R., Kmiec, J. A., Keshavan, M. S., & Sweeney, J. A. (2004). Impairment of verbal memory and learning in antipsychotic-naive patients with first-episode schizophrenia. Schizophrenia Research, 68(2-3), 127–136.  https://doi.org/10.1016/S0920-9964(03)00125-7.Google Scholar
  100. Hill, S. K., Reilly, J. L., Harris, M. S., Rosen, C., Marvin, R. W., Deleon, O., et al. (2009). A comparison of neuropsychological dysfunction in first-episode psychosis patients with unipolar depression, bipolar disorder, and schizophrenia. Schizophrenia Research, 113(2-3), 167–175.  https://doi.org/10.1016/j.schres.2009.04.020.Google Scholar
  101. Hill, S. K., Bishop, J. R., Palumbo, D., & Sweeney, J. A. (2010). Effect of second-generation antipsychotics on cognition: current issues and future challenges. Expert Review of Neurotherapeutics, 10(1), 43–57.  https://doi.org/10.1586/ern.09.143.Google Scholar
  102. Hill, S. K., Reilly, J. L., Keefe, R. S., Gold, J. M., Bishop, J. R., Gershon, E. S., et al. (2013). Neuropsychological impairments in schizophrenia and psychotic bipolar disorder: findings from the Bipolar-Schizophrenia Network on Intermediate Phenotypes (B-SNIP) study. The American Journal of Psychiatry, 170(11), 1275–1284.  https://doi.org/10.1176/appi.ajp.2013.12101298.Google Scholar
  103. Hill, S. K., Reilly, J. L., Ragozzino, M. E., Rubin, L. H., Bishop, J. R., Gur, R. C., et al. (2015). Regressing to Prior Response Preference After Set Switching Implicates Striatal Dysfunction Across Psychotic Disorders: Findings From the B-SNIP Study. Schizophrenia Bulletin, 41(4), 940–950.  https://doi.org/10.1093/schbul/sbu130.Google Scholar
  104. Hochberger, W. C., Hill, S. K., Nelson, C. L., Reilly, J. L., Keefe, R. S., Pearlson, G. D., et al. (2016). Unitary construct of generalized cognitive ability underlying BACS performance across psychotic disorders and in their first-degree relatives. Schizophrenia Research, 170(1), 156–161.  https://doi.org/10.1016/j.schres.2015.11.022.Google Scholar
  105. Hou, C. L., Xiang, Y. T., Wang, Z. L., Everall, I., Tang, Y., Yang, C., et al. (2016). Cognitive functioning in individuals at ultra-high risk for psychosis, first-degree relatives of patients with psychosis and patients with first-episode schizophrenia. Schizophrenia Research, 174(1-3), 71–76.  https://doi.org/10.1016/j.schres.2016.04.034.Google Scholar
  106. Howlin, P., Mawhood, L., & Rutter, M. (2000). Autism and developmental receptive language disorder--a follow-up comparison in early adult life. II: Social, behavioural, and psychiatric outcomes. Journal of Child Psychology and Psychiatry, 41(5), 561–578.Google Scholar
  107. Insel, T., Cuthbert, B., Garvey, M., Heinssen, R., Pine, D. S., Quinn, K., et al. (2010). Research domain criteria (RDoC): toward a new classification framework for research on mental disorders. The American Journal of Psychiatry, 167(7), 748–751.  https://doi.org/10.1176/appi.ajp.2010.09091379.Google Scholar
  108. Ivleva, E. I., Morris, D. W., Osuji, J., Moates, A. F., Carmody, T. J., Thaker, G. K., et al. (2012). Cognitive endophenotypes of psychosis within dimension and diagnosis. Psychiatry Research, 196(1), 38–44.  https://doi.org/10.1016/j.psychres.2011.08.021.Google Scholar
  109. Jaeger, J., Czobor, P., & Berns, S. M. (2003). Basic neuropsychological dimensions in schizophrenia. Schizophrenia Research, 65(2-3), 105–116.Google Scholar
  110. Jaeger, J., Berns, S., Uzelac, S., & Davis-Conway, S. (2006). Neurocognitive deficits and disability in major depressive disorder. Psychiatry Research, 145(1), 39–48.  https://doi.org/10.1016/j.psychres.2005.11.011.Google Scholar
  111. Jenkins, L. M., Bodapati, A. S., Sharma, R. P., & Rosen, C. (2017). Working memory predicts presence of auditory verbal hallucinations in schizophrenia and bipolar disorder with psychosis. Journal of Clinical and Experimental Neuropsychology, 1–11.  https://doi.org/10.1080/13803395.2017.1321106.
  112. Jimenez-Lopez, E., Aparicio, A. I., Sanchez-Morla, E. M., Rodriguez-Jimenez, R., Vieta, E., & Santos, J. L. (2017). Neurocognition in patients with psychotic and non-psychotic bipolar I disorder. A comparative study with individuals with schizophrenia. Journal of Affective Disorders, 222, 169–176.  https://doi.org/10.1016/j.jad.2017.07.014.Google Scholar
  113. Johnson, J., Horwath, E., & Weissman, M. M. (1991). The validity of major depression with psychotic features based on a community study. Archives of General Psychiatry, 48(12), 1075–1081.Google Scholar
  114. Jones, P., Rodgers, B., Murray, R., & Marmot, M. (1994). Child development risk factors for adult schizophrenia in the British 1946 birth cohort. Lancet, 344(8934), 1398–1402.Google Scholar
  115. Kahn, R. S., & Keefe, R. S. (2013). Schizophrenia is a cognitive illness: time for a change in focus. JAMA Psychiatry, 70(10), 1107–1112.  https://doi.org/10.1001/jamapsychiatry.2013.155.Google Scholar
  116. Kane, J., Honigfeld, G., Singer, J., & Meltzer, H. (1988). Clozapine for the treatment-resistant schizophrenic. A double-blind comparison with chlorpromazine. Archives of General Psychiatry, 45(9), 789–796.Google Scholar
  117. Kapczinski, F., Dias, V. V., Kauer-Sant'Anna, M., Frey, B. N., Grassi-Oliveira, R., Colom, F., et al. (2009). Clinical implications of a staging model for bipolar disorders. Expert Review of Neurotherapeutics, 9(7), 957–966.  https://doi.org/10.1586/ern.09.31.Google Scholar
  118. Keefe, R. S., & Harvey, P. D. (2015). Understanding symbol coding in schizophrenia. Biological Psychiatry, 78(11), 744–746.  https://doi.org/10.1016/j.biopsych.2015.09.005.Google Scholar
  119. Keefe, R. S., Eesley, C. E., & Poe, M. P. (2005). Defining a cognitive function decrement in schizophrenia. Biological Psychiatry, 57(6), 688–691.  https://doi.org/10.1016/j.biopsych.2005.01.003.Google Scholar
  120. Keefe, R. S., Perkins, D. O., Gu, H., Zipursky, R. B., Christensen, B. K., & Lieberman, J. A. (2006). A longitudinal study of neurocognitive function in individuals at-risk for psychosis. Schizophrenia Research, 88(1-3), 26–35.  https://doi.org/10.1016/j.schres.2006.06.041.Google Scholar
  121. Keefe, R. S., Bilder, R. M., Davis, S. M., Harvey, P. D., Palmer, B. W., Gold, J. M., et al. (2007). Neurocognitive effects of antipsychotic medications in patients with chronic schizophrenia in the CATIE Trial. Archives of General Psychiatry, 64(6), 633–647.  https://doi.org/10.1001/archpsyc.64.6.633.Google Scholar
  122. Keefe, R. S. E., Davis, V. G., Harvey, P. D., Atkins, A. S., Haig, G. M., Hagino, O., et al. (2017). Placebo Response and Practice Effects in Schizophrenia Cognition Trials. JAMA Psychiatry, 74(8), 807–814.  https://doi.org/10.1001/jamapsychiatry.2017.1574.Google Scholar
  123. Keller, J., Schatzberg, A. F., & Maj, M. (2007). Current issues in the classification of psychotic major depression. Schizophrenia Bulletin, 33(4), 877–885.  https://doi.org/10.1093/schbul/sbm065.Google Scholar
  124. Keller, J., Gomez, R., Williams, G., Lembke, A., Lazzeroni, L., Murphy Jr, G. M., et al. (2017). HPA axis in major depression: cortisol, clinical symptomatology and genetic variation predict cognition. Molecular Psychiatry, 22(4), 527–536.  https://doi.org/10.1038/mp.2016.120.Google Scholar
  125. Kendler, K. S., Ohlsson, H., Mezuk, B., Sundquist, K., & Sundquist, J. (2016). A Swedish National Prospective and co-relative study of school achievement at age 16, and risk for schizophrenia, other nonaffective psychosis, and bipolar illness. Schizophrenia Bulletin, 42(1), 77–86.  https://doi.org/10.1093/schbul/sbv103. Google Scholar
  126. Keri, S., Kelemen, O., Benedek, G., & Janka, Z. (2001). Different trait markers for schizophrenia and bipolar disorder: a neurocognitive approach. Psychological Medicine, 31(5), 915–922.Google Scholar
  127. Kern, R. S., Gold, J. M., Dickinson, D., Green, M. F., Nuechterlein, K. H., Baade, L. E., et al. (2011). The MCCB impairment profile for schizophrenia outpatients: results from the MATRICS psychometric and standardization study. Schizophrenia Research, 126(1-3), 124–131.  https://doi.org/10.1016/j.schres.2010.11.008.Google Scholar
  128. Keshavan, M. S., Morris, D. W., Sweeney, J. A., Pearlson, G., Thaker, G., Seidman, L. J., et al. (2011). A dimensional approach to the psychosis spectrum between bipolar disorder and schizophrenia: the Schizo-Bipolar Scale. Schizophrenia Research, 133(1-3), 250–254.  https://doi.org/10.1016/j.schres.2011.09.005.Google Scholar
  129. Khandaker, G. M., Barnett, J. H., White, I. R., & Jones, P. B. (2011). A quantitative meta-analysis of population-based studies of premorbid intelligence and schizophrenia. Schizophrenia Research, 132(2-3), 220–227.  https://doi.org/10.1016/j.schres.2011.06.017.Google Scholar
  130. Kim, D., Kim, J. W., Koo, T. H., Yun, H. R., & Won, S. H. (2015). Shared and distinct neurocognitive endophenotypes of schizophrenia and psychotic bipolar disorder. Clin Psychopharmacol Neurosci, 13(1), 94–102.  https://doi.org/10.9758/cpn.2015.13.1.94.Google Scholar
  131. Kimhy, D., Corcoran, C., Harkavy-Friedman, J. M., Ritzler, B., Javitt, D. C., & Malaspina, D. (2007). Visual form perception: a comparison of individuals at high risk for psychosis, recent onset schizophrenia and chronic schizophrenia. Schizophrenia Research, 97(1-3), 25–34.  https://doi.org/10.1016/j.schres.2007.08.022.Google Scholar
  132. Kirkpatrick, B., Messias, E., Harvey, P. D., Fernandez-Egea, E., & Bowie, C. R. (2008). Is schizophrenia a syndrome of accelerated aging? Schizophrenia Bulletin, 34(6), 1024–1032.  https://doi.org/10.1093/schbul/sbm140.Google Scholar
  133. Klosterkotter, J., Hellmich, M., Steinmeyer, E. M., & Schultze-Lutter, F. (2001). Diagnosing schizophrenia in the initial prodromal phase. Archives of General Psychiatry, 58(2), 158–164.Google Scholar
  134. Knowles, E. E., Weiser, M., David, A. S., Glahn, D. C., Davidson, M., & Reichenberg, A. (2015). The puzzle of processing speed, memory, and executive function impairments in schizophrenia: fitting the pieces together. Biological Psychiatry, 78(11), 786–793.  https://doi.org/10.1016/j.biopsych.2015.01.018.Google Scholar
  135. Kraepelin, E., Barclay, R. M., & Robertson, G. M. (1919). Dementia praecox and paraphrenia. New York: Robert E Krieger Publishing Co Inc.Google Scholar
  136. Kraus, M., Rapisarda, A., Lam, M., Thong, J. Y. J., Lee, J., Subramaniam, M., et al. (2016). Disrupted latent inhibition in individuals at ultra high-risk for developing psychosis. Schizophr Res Cogn, 6, 1–8.  https://doi.org/10.1016/j.scog.2016.07.003.Google Scholar
  137. Kravariti, E., Reichenberg, A., Morgan, K., Dazzan, P., Morgan, C., Zanelli, J. W., et al. (2009). Selective deficits in semantic verbal fluency in patients with a first affective episode with psychotic symptoms and a positive history of mania. Bipolar Disorders, 11(3), 323–329.  https://doi.org/10.1111/j.1399-5618.2009.00673.x.Google Scholar
  138. Kremen, W. S., Buka, S. L., Seidman, L. J., Goldstein, J. M., Koren, D., & Tsuang, M. T. (1998). IQ decline during childhood and adult psychotic symptoms in a community sample: a 19-year longitudinal study. The American Journal of Psychiatry, 155(5), 672–677.  https://doi.org/10.1176/ajp.155.5.672.Google Scholar
  139. Kremen, W. S., Vinogradov, S., Poole, J. H., Schaefer, C. A., Deicken, R. F., Factor-Litvak, P., et al. (2010). Cognitive decline in schizophrenia from childhood to midlife: a 33-year longitudinal birth cohort study. Schizophrenia Research, 118(1-3), 1–5.  https://doi.org/10.1016/j.schres.2010.01.009.Google Scholar
  140. Laes, J. R., & Sponheim, S. R. (2006). Does cognition predict community function only in schizophrenia?: a study of schizophrenia patients, bipolar affective disorder patients, and community control subjects. Schizophrenia Research, 84(1), 121–131.  https://doi.org/10.1016/j.schres.2005.11.023.Google Scholar
  141. Lemos-Giraldez, S., Vallina-Fernandez, O., Fernandez-Iglesias, P., Vallejo-Seco, G., Fonseca-Pedrero, E., Paino-Pineiro, M., et al. (2009). Symptomatic and functional outcome in youth at ultra-high risk for psychosis: a longitudinal study. Schizophrenia Research, 115(2-3), 121–129.  https://doi.org/10.1016/j.schres.2009.09.011.Google Scholar
  142. Lencz, T., Smith, C. W., McLaughlin, D., Auther, A., Nakayama, E., Hovey, L., et al. (2006). Generalized and specific neurocognitive deficits in prodromal schizophrenia. Biological Psychiatry, 59(9), 863–871.  https://doi.org/10.1016/j.biopsych.2005.09.005.Google Scholar
  143. Lesh, T. A., Westphal, A. J., Niendam, T. A., Yoon, J. H., Minzenberg, M. J., Ragland, J. D., et al. (2013). Proactive and reactive cognitive control and dorsolateral prefrontal cortex dysfunction in first episode schizophrenia. Neuroimage Clin, 2, 590–599.  https://doi.org/10.1016/j.nicl.2013.04.010. Google Scholar
  144. Levy, B., & Weiss, R. D. (2010). Neurocognitive impairment and psychosis in bipolar I disorder during early remission from an acute episode of mood disturbance. The Journal of Clinical Psychiatry, 71(2), 201–206.  https://doi.org/10.4088/JCP.08m04663yel.Google Scholar
  145. Lewandowski, K. E., Cohen, B. M., Keshavan, M. S., & Ongur, D. (2011a). Relationship of neurocognitive deficits to diagnosis and symptoms across affective and non-affective psychoses. Schizophrenia Research, 133(1-3), 212–217.  https://doi.org/10.1016/j.schres.2011.09.004.Google Scholar
  146. Lewandowski, K. E., Cohen, B. M., & Ongur, D. (2011b). Evolution of neuropsychological dysfunction during the course of schizophrenia and bipolar disorder. Psychological Medicine, 41(2), 225–241.  https://doi.org/10.1017/s0033291710001042.Google Scholar
  147. Lin, A., Wood, S. J., Nelson, B., Brewer, W. J., Spiliotacopoulos, D., Bruxner, A., et al. (2011). Neurocognitive predictors of functional outcome two to 13 years after identification as ultra-high risk for psychosis. Schizophrenia Research, 132(1), 1–7.  https://doi.org/10.1016/j.schres.2011.06.014.Google Scholar
  148. Liu, C. C., Hua, M. S., Hwang, T. J., Chiu, C. Y., Liu, C. M., Hsieh, M. H., et al. (2015). Neurocognitive functioning of subjects with putative pre-psychotic states and early psychosis. Schizophrenia Research, 164(1-3), 40–46.  https://doi.org/10.1016/j.schres.2015.03.006.Google Scholar
  149. Liu, D., Ji, C., Zhuo, K., Song, Z., Wang, Y., Mei, L., et al. (2017). Impaired cue identification and intention retrieval underlie prospective memory deficits in patients with first-episode schizophrenia. The Australian and New Zealand Journal of Psychiatry, 51(3), 270–277.  https://doi.org/10.1177/0004867416640097.Google Scholar
  150. MacCabe, J. H., Lambe, M. P., Cnattingius, S., Torrang, A., Bjork, C., Sham, P. C., et al. (2008). Scholastic achievement at age 16 and risk of schizophrenia and other psychoses: a national cohort study. Psychological Medicine, 38(8), 1133–1140.  https://doi.org/10.1017/s0033291707002048. Google Scholar
  151. MacCabe, J. H., Lambe, M. P., Cnattingius, S., Sham, P. C., David, A. S., Reichenberg, A., et al. (2010). Excellent school performance at age 16 and risk of adult bipolar disorder: national cohort study. The British Journal of Psychiatry, 196(2), 109–115.  https://doi.org/10.1192/bjp.bp.108.060368.Google Scholar
  152. MacCabe, J. H., Wicks, S., Lofving, S., David, A. S., Berndtsson, A., Gustafsson, J. E., et al. (2013). Decline in cognitive performance between ages 13 and 18 years and the risk for psychosis in adulthood: a Swedish longitudinal cohort study in males. JAMA Psychiatry, 70(3), 261–270.  https://doi.org/10.1001/2013.jamapsychiatry.43.Google Scholar
  153. MacKenzie, L. E., Patterson, V. C., Zwicker, A., Drobinin, V., Fisher, H. L., Abidi, S., et al. (2017). Hot and cold executive functions in youth with psychotic symptoms. Psychological Medicine, 47(16), 2844–2853.  https://doi.org/10.1017/S0033291717001374.Google Scholar
  154. Martinez-Aran, A., Vieta, E., Colom, F., Torrent, C., Sanchez-Moreno, J., Reinares, M., et al. (2004). Cognitive impairment in euthymic bipolar patients: implications for clinical and functional outcome. Bipolar Disorders, 6(3), 224–232.  https://doi.org/10.1111/j.1399-5618.2004.00111.x.Google Scholar
  155. Martinez-Aran, A., Vieta, E., Torrent, C., Sanchez-Moreno, J., Goikolea, J. M., Salamero, M., et al. (2007). Functional outcome in bipolar disorder: the role of clinical and cognitive factors. Bipolar Disorders, 9(1-2), 103–113.  https://doi.org/10.1111/j.1399-5618.2007.00327.x.Google Scholar
  156. Martinez-Aran, A., Torrent, C., Tabares-Seisdedos, R., Salamero, M., Daban, C., Balanza-Martinez, V., et al. (2008). Neurocognitive impairment in bipolar patients with and without history of psychosis. The Journal of Clinical Psychiatry, 69(2), 233–239.Google Scholar
  157. Martino, D. J., Samame, C., Ibanez, A., & Strejilevich, S. A. (2015). Neurocognitive functioning in the premorbid stage and in the first episode of bipolar disorder: a systematic review. Psychiatry Research, 226(1), 23–30.  https://doi.org/10.1016/j.psychres.2014.12.044.Google Scholar
  158. Martino, D. J., Igoa, A., Marengo, E., Scapola, M., & Strejilevich, S. A. (2018). Longitudinal relationship between clinical course and neurocognitive impairments in bipolar disorder. Journal of Affective Disorders, 225, 250–255.  https://doi.org/10.1016/j.jad.2017.08.011.Google Scholar
  159. McCleery, A., Ventura, J., Kern, R. S., Subotnik, K. L., Gretchen-Doorly, D., Green, M. F., et al. (2014). Cognitive functioning in first-episode schizophrenia: MATRICS Consensus Cognitive Battery (MCCB) Profile of Impairment. Schizophrenia Research, 157(1-3), 33–39.  https://doi.org/10.1016/j.schres.2014.04.039.Google Scholar
  160. McClellan, J., Prezbindowski, A., Breiger, D., & McCurry, C. (2004). Neuropsychological functioning in early onset psychotic disorders. Schizophrenia Research, 68(1), 21–26.  https://doi.org/10.1016/s0920-9964(03)00058-6. Google Scholar
  161. McIntosh, A. M., Harrison, L. K., Forrester, K., Lawrie, S. M., & Johnstone, E. C. (2005). Neuropsychological impairments in people with schizophrenia or bipolar disorder and their unaffected relatives. The British Journal of Psychiatry, 186, 378–385.  https://doi.org/10.1192/bjp.186.5.378.Google Scholar
  162. McKay, R., Langdon, R., & Coltheart, M. (2006). Need for closure, jumping to conclusions, and decisiveness in delusion-prone individuals. The Journal of Nervous and Mental Disease, 194(6), 422–426.  https://doi.org/10.1097/01.nmd.0000221353.44132.25.Google Scholar
  163. Meier, M. H., Caspi, A., Reichenberg, A., Keefe, R. S., Fisher, H. L., Harrington, H., et al. (2014). Neuropsychological decline in schizophrenia from the premorbid to the postonset period: evidence from a population-representative longitudinal study. The American Journal of Psychiatry, 171(1), 91–101.  https://doi.org/10.1176/appi.ajp.2013.12111438.Google Scholar
  164. Mesholam-Gately, R. I., Giuliano, A. J., Goff, K. P., Faraone, S. V., & Seidman, L. J. (2009). Neurocognition in first-episode schizophrenia: a meta-analytic review. Neuropsychology, 23(3), 315–336.  https://doi.org/10.1037/a0014708.Google Scholar
  165. Miskowiak, K. W., Burdick, K. E., Martinez-Aran, A., Bonnin, C. M., Bowie, C. R., Carvalho, A. F., et al. (2018). Assessing and addressing cognitive impairment in bipolar disorder: the International Society for Bipolar Disorders Targeting Cognition Task Force recommendations for clinicians. Bipolar Disorders.  https://doi.org/10.1111/bdi.12595s.
  166. Mittal, V. A., & Wakschlag, L. S. (2017). Research domain criteria (RDoC) grows up: Strengthening neurodevelopment investigation within the RDoC framework. Journal of Affective Disorders, 216, 30–35.  https://doi.org/10.1016/j.jad.2016.12.011.Google Scholar
  167. Mojtabai, R., Bromet, E. J., Harvey, P. D., Carlson, G. A., Craig, T. J., & Fennig, S. (2000). Neuropsychological differences between first-admission schizophrenia and psychotic affective disorders. The American Journal of Psychiatry, 157(9), 1453–1460.  https://doi.org/10.1176/appi.ajp.157.9.1453.Google Scholar
  168. Mollon, J., & Reichenberg, A. (2017). Cognitive development prior to onset of psychosis. Psychological Medicine, 1–12.  https://doi.org/10.1017/s0033291717001970.
  169. Muralidharan, K., Torres, I. J., Silveira, L. E., Kozicky, J. M., Bucker, J., Fernando, N., et al. (2014). Impact of depressive episodes on cognitive deficits in early bipolar disorder: data from the Systematic Treatment Optimization Programme for Early Mania (STOP-EM). The British Journal of Psychiatry, 205(1), 36–43.  https://doi.org/10.1192/bjp.bp.113.135525.Google Scholar
  170. Murray, R. M., & Lewis, S. W. (1987). Is schizophrenia a neurodevelopmental disorder? British Medical Journal (Clinical Research Ed.), 295(6600), 681–682.Google Scholar
  171. Nielsen, R. E., Levander, S., Kjaersdam Telleus, G., Jensen, S. O., Ostergaard Christensen, T., & Leucht, S. (2015). Second-generation antipsychotic effect on cognition in patients with schizophrenia--a meta-analysis of randomized clinical trials. Acta Psychiatrica Scandinavica, 131(3), 185–196.  https://doi.org/10.1111/acps.12374.Google Scholar
  172. Niendam, T. A., Bearden, C. E., Rosso, I. M., Sanchez, L. E., Hadley, T., Nuechterlein, K. H., et al. (2003). A prospective study of childhood neurocognitive functioning in schizophrenic patients and their siblings. The American Journal of Psychiatry, 160(11), 2060–2062.  https://doi.org/10.1176/appi.ajp.160.11.2060.Google Scholar
  173. Niendam, T. A., Bearden, C. E., Johnson, J. K., McKinley, M., Loewy, R., O'Brien, M., et al. (2006). Neurocognitive performance and functional disability in the psychosis prodrome. Schizophrenia Research, 84(1), 100–111.  https://doi.org/10.1016/j.schres.2006.02.005.Google Scholar
  174. O'Brien, J. T., Ames, D., Schweitzer, I., Colman, P., Desmond, P., & Tress, B. (1996). Clinical and magnetic resonance imaging correlates of hypothalamic-pituitary-adrenal axis function in depression and Alzheimer's disease. The British Journal of Psychiatry, 168(6), 679–687.Google Scholar
  175. Ohaeri, J. U. (2003). The burden of caregiving in families with a mental illness: a review of 2002. Current Opinion in Psychiatry, 16(4), 457–465.Google Scholar
  176. Olvet, D. M., Stearns, W. H., McLaughlin, D., Auther, A. M., Correll, C. U., & Cornblatt, B. A. (2010). Comparing clinical and neurocognitive features of the schizophrenia prodrome to the bipolar prodrome. Schizophrenia Research, 123(1), 59–63.  https://doi.org/10.1016/j.schres.2010.07.005.Google Scholar
  177. Ozdel, O., Karadag, F., Atesci, F. C., Oguzhanoglu, N. K., & Cabuk, T. (2007). Cognitive functions in euthymic patients with bipolar disorder. Annals of Saudi Medicine, 27(4), 273–278.Google Scholar
  178. Parellada, M., Gomez-Vallejo, S., Burdeus, M., & Arango, C. (2017). Developmental Differences Between Schizophrenia and Bipolar Disorder. Schizophrenia Bulletin, 43(6), 1176–1189.  https://doi.org/10.1093/schbul/sbx126.Google Scholar
  179. Park, S., Holzman, P. S., & Lenzenweger, M. F. (1995). Individual differences in spatial working memory in relation to schizotypy. Journal of Abnormal Psychology, 104(2), 355–363.Google Scholar
  180. Paya, B., Rodriguez-Sanchez, J. M., Otero, S., Munoz, P., Castro-Fornieles, J., Parellada, M., et al. (2013). Premorbid impairments in early-onset psychosis: differences between patients with schizophrenia and bipolar disorder. Schizophrenia Research, 146(1-3), 103–110.  https://doi.org/10.1016/j.schres.2013.01.029.Google Scholar
  181. Pena, J., Ojeda, N., Segarra, R., Eguiluz, J. I., Garcia, J., & Gutierrez, M. (2011). Executive functioning correctly classified diagnoses in patients with first-episode psychosis: evidence from a 2-year longitudinal study. Schizophrenia Research, 126(1-3), 77–80.  https://doi.org/10.1016/j.schres.2010.09.019.Google Scholar
  182. Prado, C. E., Watt, S., & Crowe, S. F. (2018). A meta-analysis of the effects of antidepressants on cognitive functioning in depressed and non-depressed samples. Neuropsychology Review, 28(1), 32–72.  https://doi.org/10.1007/s11065-018-9369-5.Google Scholar
  183. Rabinowitz, J., De Smedt, G., Harvey, P. D., & Davidson, M. (2002). Relationship between premorbid functioning and symptom severity as assessed at first episode of psychosis. The American Journal of Psychiatry, 159(12), 2021–2026.  https://doi.org/10.1176/appi.ajp.159.12.2021.Google Scholar
  184. Rapoport, J. L., Giedd, J. N., & Gogtay, N. (2012). Neurodevelopmental model of schizophrenia: update 2012. Molecular Psychiatry, 17(12), 1228–1238.  https://doi.org/10.1038/mp.2012.23.Google Scholar
  185. Ratheesh, A., Lin, A., Nelson, B., Wood, S. J., Brewer, W., Betts, J., et al. (2013). Neurocognitive functioning in the prodrome of mania--an exploratory study. Journal of Affective Disorders, 147(1-3), 441–445.  https://doi.org/10.1016/j.jad.2012.09.017.Google Scholar
  186. Reichenberg, A., & Harvey, P. D. (2007). Neuropsychological impairments in schizophrenia: Integration of performance-based and brain imaging findings. Psychological Bulletin, 133(5), 833–858.  https://doi.org/10.1037/0033-2909.133.5.833.Google Scholar
  187. Reichenberg, A., Weiser, M., Rabinowitz, J., Caspi, A., Schmeidler, J., Mark, M., et al. (2002). A population-based cohort study of premorbid intellectual, language, and behavioral functioning in patients with schizophrenia, schizoaffective disorder, and nonpsychotic bipolar disorder. The American Journal of Psychiatry, 159(12), 2027–2035.  https://doi.org/10.1176/appi.ajp.159.12.2027.Google Scholar
  188. Reichenberg, A., Harvey, P. D., Bowie, C. R., Mojtabai, R., Rabinowitz, J., Heaton, R. K., et al. (2009). Neuropsychological function and dysfunction in schizophrenia and psychotic affective disorders. Schizophrenia Bulletin, 35(5), 1022–1029.  https://doi.org/10.1093/schbul/sbn044.Google Scholar
  189. Reichenberg, A., Caspi, A., Harrington, H., Houts, R., Keefe, R. S., Murray, R. M., et al. (2010). Static and dynamic cognitive deficits in childhood preceding adult schizophrenia: a 30-year study. The American Journal of Psychiatry, 167(2), 160–169.  https://doi.org/10.1176/appi.ajp.2009.09040574.Google Scholar
  190. Reilly, J. L., Hill, S. K., Gold, J. M., Keefe, R. S., Clementz, B. A., Gershon, E., et al. (2017). Impaired Context Processing is Attributable to Global Neuropsychological Impairment in Schizophrenia and Psychotic Bipolar Disorder. Schizophrenia Bulletin, 43(2), 397–406.  https://doi.org/10.1093/schbul/sbw081. Google Scholar
  191. Revell, E. R., Neill, J. C., Harte, M., Khan, Z., & Drake, R. J. (2015). A systematic review and meta-analysis of cognitive remediation in early schizophrenia. Schizophrenia Research, 168(1-2), 213–222.  https://doi.org/10.1016/j.schres.2015.08.017.Google Scholar
  192. Rock, P. L., Roiser, J. P., Riedel, W. J., & Blackwell, A. D. (2014). Cognitive impairment in depression: a systematic review and meta-analysis. Psychological medicine, 44(10), 2029–2040.Google Scholar
  193. Rossler, W., Salize, H. J., van Os, J., & Riecher-Rossler, A. (2005). Size of burden of schizophrenia and psychotic disorders. European Neuropsychopharmacology, 15(4), 399–409.  https://doi.org/10.1016/j.euroneuro.2005.04.009.Google Scholar
  194. Rossler, W., Ajdacic-Gross, V., Muller, M., Rodgers, S., Kawohl, W., Haker, H., et al. (2015). Association between processing speed and subclinical psychotic symptoms in the general population: focusing on sex differences. Schizophrenia Research, 166(1-3), 316–321.  https://doi.org/10.1016/j.schres.2015.05.026.Google Scholar
  195. Rund, B. R., Barder, H. E., Evensen, J., Haahr, U., ten Velden Hegelstad, W., Joa, I., et al. (2016). Neurocognition and Duration of Psychosis: A 10-year Follow-up of First-Episode Patients. Schizophrenia Bulletin, 42(1), 87–95.  https://doi.org/10.1093/schbul/sbv083. Google Scholar
  196. Samame, C., Martino, D. J., & Strejilevich, S. A. (2014). Longitudinal course of cognitive deficits in bipolar disorder: a meta-analytic study. Journal of Affective Disorders, 164, 130–138.  https://doi.org/10.1016/j.jad.2014.04.028.Google Scholar
  197. Sanchez-Moreno, J., Martinez-Aran, A., Tabares-Seisdedos, R., Torrent, C., Vieta, E., & Ayuso-Mateos, J. L. (2009). Functioning and disability in bipolar disorder: an extensive review. Psychotherapy and Psychosomatics, 78(5), 285–297.  https://doi.org/10.1159/000228249.Google Scholar
  198. Sanchez-Torres, A. M., Moreno-Izco, L., Lorente-Omenaca, R., Cabrera, B., Lobo, A., Gonzalez-Pinto, A. M., et al. (2017). Individual trajectories of cognitive performance in first episode psychosis: a 2-year follow-up study. European Archives of Psychiatry and Clinical Neuroscience.  https://doi.org/10.1007/s00406-017-0857-z.
  199. Savitz, J., van der Merwe, L., Stein, D. J., Solms, M., & Ramesar, R. (2009). Neuropsychological status of bipolar I disorder: impact of psychosis. The British Journal of Psychiatry, 194(3), 243–251.  https://doi.org/10.1192/bjp.bp.108.052001.Google Scholar
  200. Schatzberg, A. F., Posener, J. A., DeBattista, C., Kalehzan, B. M., Rothschild, A. J., & Shear, P. K. (2000). Neuropsychological deficits in psychotic versus nonpsychotic major depression and no mental illness. The American Journal of Psychiatry, 157(7), 1095–1100.  https://doi.org/10.1176/appi.ajp.157.7.1095.Google Scholar
  201. Schouws, S. N., Stek, M. L., Comijs, H. C., Dols, A., & Beekman, A. T. (2012). Cognitive decline in elderly bipolar disorder patients: a follow-up study. Bipolar Disorders, 14(7), 749–755.  https://doi.org/10.1111/bdi.12000.Google Scholar
  202. Seidman, L. J., & Mirsky, A. F. (2017). Evolving Notions of Schizophrenia as a Developmental Neurocognitive Disorder. Journal of the International Neuropsychological Society, 23(9-10), 881–892.  https://doi.org/10.1017/S1355617717001114.Google Scholar
  203. Seidman, L. J., Kremen, W. S., Koren, D., Faraone, S. V., Goldstein, J. M., & Tsuang, M. T. (2002). A comparative profile analysis of neuropsychological functioning in patients with schizophrenia and bipolar psychoses. Schizophrenia Research, 53(1-2), 31–44.Google Scholar
  204. Seidman, L. J., Giuliano, A. J., Meyer, E. C., Addington, J., Cadenhead, K. S., Cannon, T. D., et al. (2010). Neuropsychology of the prodrome to psychosis in the NAPLS consortium: relationship to family history and conversion to psychosis. Archives of General Psychiatry, 67(6), 578–588.  https://doi.org/10.1001/archgenpsychiatry.2010.66. Google Scholar
  205. Seidman, L. J., Cherkerzian, S., Goldstein, J. M., Agnew-Blais, J., Tsuang, M. T., & Buka, S. L. (2013). Neuropsychological performance and family history in children at age 7 who develop adult schizophrenia or bipolar psychosis in the New England Family Studies. Psychological Medicine, 43(1), 119–131.  https://doi.org/10.1017/s0033291712000773.Google Scholar
  206. Seidman, L. J., Shapiro, D. I., Stone, W. S., Woodberry, K. A., Ronzio, A., Cornblatt, B. A., et al. (2016). Association of Neurocognition With Transition to Psychosis: Baseline Functioning in the Second Phase of the North American Prodrome Longitudinal Study. JAMA Psychiatry, 73(12), 1239–1248.  https://doi.org/10.1001/jamapsychiatry.2016.2479.Google Scholar
  207. Selva, G., Salazar, J., Balanza-Martinez, V., Martinez-Aran, A., Rubio, C., Daban, C., et al. (2007). Bipolar I patients with and without a history of psychotic symptoms: do they differ in their cognitive functioning? Journal of Psychiatric Research, 41(3-4), 265–272.  https://doi.org/10.1016/j.jpsychires.2006.03.007.Google Scholar
  208. Sheffield, J. M., Williams, L. E., Cohen, N., & Heckers, S. (2012). Relational memory in psychotic bipolar disorder. Bipolar Disorders, 14(5), 537–546.  https://doi.org/10.1111/j.1399-5618.2012.01036.x.Google Scholar
  209. Sheffield, J. M., Gold, J. M., Strauss, M. E., Carter, C. S., MacDonald 3rd, A. W., Ragland, J. D., et al. (2014). Common and specific cognitive deficits in schizophrenia: relationships to function. Cognitive, Affective, & Behavioral Neuroscience, 14(1), 161–174.  https://doi.org/10.3758/s13415-013-0211-5.Google Scholar
  210. Sheffield, J. M., Kandala, S., Burgess, G. C., Harms, M. P., & Barch, D. M. (2016). Cingulo-opercular network efficiency mediates the association between psychotic-like experiences and cognitive ability in the general population. Biol Psychiatry Cogn Neurosci Neuroimaging, 1(6), 498–506.  https://doi.org/10.1016/j.bpsc.2016.03.009.Google Scholar
  211. Sheffield, J. M., Ruge, H., Kandala, S., & Barch, D. M. (2018). Rapid instruction-based task learning (RITL) in schizophrenia. Journal of Abnormal Psychology, 127(5), 513–528.  https://doi.org/10.1037/abn0000354.Google Scholar
  212. Silverstein, S., Uhlhaas, P. J., Essex, B., Halpin, S., Schall, U., & Carr, V. (2006). Perceptual organization in first episode schizophrenia and ultra-high-risk states. Schizophrenia Research, 83(1), 41–52.  https://doi.org/10.1016/j.schres.2006.01.003.Google Scholar
  213. Silverstein, S. M., Keane, B. P., Barch, D. M., Carter, C. S., Gold, J. M., Kovacs, I., et al. (2012). Optimization and validation of a visual integration test for schizophrenia research. Schizophrenia Bulletin, 38(1), 125–134.  https://doi.org/10.1093/schbul/sbr141.Google Scholar
  214. Simon, A. E., Cattapan-Ludewig, K., Zmilacher, S., Arbach, D., Gruber, K., Dvorsky, D. N., et al. (2007). Cognitive functioning in the schizophrenia prodrome. Schizophrenia Bulletin, 33(3), 761–771.  https://doi.org/10.1093/schbul/sbm018.Google Scholar
  215. Simon, A. E., Grädel, M., Cattapan-Ludewig, K., Gruber, K., Ballinari, P., Roth, B., et al. (2012). Cognitive functioning in at-risk mental states for psychosis and 2-year clinical outcome. Schizophrenia research, 142(1–3), 108–115.Google Scholar
  216. Simonsen, C., Sundet, K., Vaskinn, A., Birkenaes, A. B., Engh, J. A., Faerden, A., et al. (2011). Neurocognitive dysfunction in bipolar and schizophrenia spectrum disorders depends on history of psychosis rather than diagnostic group. Schizophrenia Bulletin, 37(1), 73–83.  https://doi.org/10.1093/schbul/sbp034.Google Scholar
  217. Sorensen, H. J., Saebye, D., Urfer-Parnas, A., Mortensen, E. L., & Parnas, J. (2012). Premorbid intelligence and educational level in bipolar and unipolar disorders: a Danish draft board study. Journal of Affective Disorders, 136(3), 1188–1191.  https://doi.org/10.1016/j.jad.2011.12.007.Google Scholar
  218. Sperry, S. H., O'Connor, L. K., Ongur, D., Cohen, B. M., Keshavan, M. S., & Lewandowski, K. E. (2015). Measuring Cognition in Bipolar Disorder with Psychosis Using the MATRICS Consensus Cognitive Battery. Journal of the International Neuropsychological Society, 21(6), 468–472.  https://doi.org/10.1017/s1355617715000442.Google Scholar
  219. Strauss, G. P., Allen, D. N., Miski, P., Buchanan, R. W., Kirkpatrick, B., & Carpenter Jr, W. T. (2012). Differential patterns of premorbid social and academic deterioration in deficit and nondeficit schizophrenia. Schizophrenia Research, 135(1-3), 134–138.  https://doi.org/10.1016/j.schres.2011.11.007.Google Scholar
  220. Su, C. Y., Wang, P. W., Lin, Y. J., Tang, T. C., Liu, M. F., & Chen, M. D. (2016). The effects of aerobic exercise on cognition in schizophrenia: A 3-month follow-up study. Psychiatry Research, 244, 394–402.  https://doi.org/10.1016/j.psychres.2016.08.011.Google Scholar
  221. Tabares-Seisdedos, R., Balanza-Martinez, V., Sanchez-Moreno, J., Martinez-Aran, A., Salazar-Fraile, J., Selva-Vera, G., et al. (2008). Neurocognitive and clinical predictors of functional outcome in patients with schizophrenia and bipolar I disorder at one-year follow-up. Journal of Affective Disorders, 109(3), 286–299.  https://doi.org/10.1016/j.jad.2007.12.234.Google Scholar
  222. Tiihonen, J., Haukka, J., Henriksson, M., Cannon, M., Kieseppa, T., Laaksonen, I., et al. (2005). Premorbid intellectual functioning in bipolar disorder and schizophrenia: results from a cohort study of male conscripts. The American Journal of Psychiatry, 162(10), 1904–1910.  https://doi.org/10.1176/appi.ajp.162.10.1904.Google Scholar
  223. Tohen, M., Strakowski, S. M., Zarate Jr, C., Hennen, J., Stoll, A. L., Suppes, T., et al. (2000). The McLean-Harvard first-episode project: 6-month symptomatic and functional outcome in affective and nonaffective psychosis. Biological Psychiatry, 48(6), 467–476.Google Scholar
  224. Torrent, C., Bonnin Cdel, M., Martinez-Aran, A., Valle, J., Amann, B. L., Gonzalez-Pinto, A., et al. (2013). Efficacy of functional remediation in bipolar disorder: a multicenter randomized controlled study. The American Journal of Psychiatry, 170(8), 852–859.  https://doi.org/10.1176/appi.ajp.2012.12070971.Google Scholar
  225. Torrent, C., Reinares, M., Martinez-Aran, A., Cabrera, B., Amoretti, S., Corripio, I., et al. (2018). Affective versus non-affective first episode psychoses: A longitudinal study. Journal of Affective Disorders, 238, 297–304.  https://doi.org/10.1016/j.jad.2018.06.005.Google Scholar
  226. Torres, I. J., Boudreau, V. G., & Yatham, L. N. (2007). Neuropsychological functioning in euthymic bipolar disorder: a meta-analysis. Acta Psychiatrica Scandinavica, 116, 17–26.Google Scholar
  227. Torres, I. J., Kozicky, J., Popuri, S., Bond, D. J., Honer, W. G., Lam, R. W., et al. (2014). 12-month longitudinal cognitive functioning in patients recently diagnosed with bipolar disorder. Bipolar Disorders, 16(2), 159–171.  https://doi.org/10.1111/bdi.12154.Google Scholar
  228. Trisha, C., Golnoush, A., Jan-Marie, K., Torres, I. J., & Yatham, L. N. (2017). Cognitive functioning in first episode bipolar I disorder patients with and without history of psychosis. Journal of Affective Disorders, 227, 109–116.  https://doi.org/10.1016/j.jad.2017.10.003. Google Scholar
  229. Trisha, C., Golnoush, A., Jan-Marie, K., Torres, I. J., & Yatham, L. N. (2018). Cognitive functioning in first episode bipolar I disorder patients with and without history of psychosis. Journal of Affective Disorders, 227, 109–116.  https://doi.org/10.1016/j.jad.2017.10.003.Google Scholar
  230. Trotta, A., Murray, R. M., & MacCabe, J. H. (2015). Do premorbid and post-onset cognitive functioning differ between schizophrenia and bipolar disorder? A systematic review and meta-analysis. Psychological Medicine, 45(2), 381–394.  https://doi.org/10.1017/s0033291714001512.Google Scholar
  231. van Os, J., Linscott, R. J., Myin-Germeys, I., Delespaul, P., & Krabbendam, L. (2009). A systematic review and meta-analysis of the psychosis continuum: evidence for a psychosis proneness-persistence-impairment model of psychotic disorder. Psychological Medicine, 39(2), 179–195.  https://doi.org/10.1017/S0033291708003814.Google Scholar
  232. Van Rheenen, T. E., Bryce, S., Tan, E. J., Neill, E., Gurvich, C., Louise, S., et al. (2016). Does cognitive performance map to categorical diagnoses of schizophrenia, schizoaffective disorder and bipolar disorder? A discriminant functions analysis. Journal of Affective Disorders, 192, 109–115.  https://doi.org/10.1016/j.jad.2015.12.022.Google Scholar
  233. Velligan, D. I., Mahurin, R. K., Diamond, P. L., Hazleton, B. C., Eckert, S. L., & Miller, A. L. (1997). The functional significance of symptomatology and cognitive function in schizophrenia. Schizophrenia Research, 25(1), 21–31.  https://doi.org/10.1016/S0920-9964(97)00010-8.Google Scholar
  234. Vohringer, P. A., Barroilhet, S. A., Amerio, A., Reale, M. L., Alvear, K., Vergne, D., et al. (2013). Cognitive impairment in bipolar disorder and schizophrenia: a systematic review. Frontiers in Psychiatry, 4, 87.  https://doi.org/10.3389/fpsyt.2013.00087.Google Scholar
  235. Watt, N. F., & Lubensky, A. W. (1976). Childhood roots of schizophrenia. Journal of Consulting and Clinical Psychology, 44(3), 363–375.Google Scholar
  236. Weinberger, D. R. (1987). Implications of normal brain development for the pathogenesis of schizophrenia. Archives of General Psychiatry, 44(7), 660–669.Google Scholar
  237. Welham, J., Scott, J., Williams, G. M., Najman, J. M., Bor, W., O'Callaghan, M., et al. (2010). The antecedents of non-affective psychosis in a birth-cohort, with a focus on measures related to cognitive ability, attentional dysfunction and speech problems. Acta Psychiatrica Scandinavica, 121(4), 273–279.  https://doi.org/10.1111/j.1600-0447.2009.01470.x.Google Scholar
  238. Wingo, A. P., Harvey, P. D., & Baldessarini, R. J. (2009). Neurocognitive impairment in bipolar disorder patients: functional implications. Bipolar Disorders, 11(2), 113–125.  https://doi.org/10.1111/j.1399-5618.2009.00665.x.Google Scholar
  239. Woodberry, K. A., Giuliano, A. J., & Seidman, L. J. (2008). Premorbid IQ in schizophrenia: a meta-analytic review. The American Journal of Psychiatry, 165(5), 579–587.  https://doi.org/10.1176/appi.ajp.2008.07081242.Google Scholar
  240. Woodward, N. D. (2016). The course of neuropsychological impairment and brain structure abnormalities in psychotic disorders. Neuroscience Research, 102, 39–46.  https://doi.org/10.1016/j.neures.2014.08.006.Google Scholar
  241. Wykes, T., Huddy, V., Cellard, C., McGurk, S. R., & Czobor, P. (2011). A meta-analysis of cognitive remediation for schizophrenia: methodology and effect sizes. The American Journal of Psychiatry, 168(5), 472–485.  https://doi.org/10.1176/appi.ajp.2010.10060855.Google Scholar
  242. Zabala, A., Rapado, M., Arango, C., Robles, O., de la Serna, E., Gonzalez, C., et al. (2010). Neuropsychological functioning in early-onset first-episode psychosis: comparison of diagnostic subgroups. European Archives of Psychiatry and Clinical Neuroscience, 260(3), 225–233.  https://doi.org/10.1007/s00406-009-0046-9.Google Scholar
  243. Zammit, S., Allebeck, P., David, A. S., Dalman, C., Hemmingsson, T., Lundberg, I., et al. (2004). A longitudinal study of premorbid IQ Score and risk of developing schizophrenia, bipolar disorder, severe depression, and other nonaffective psychoses. Archives of General Psychiatry, 61(4), 354–360.  https://doi.org/10.1001/archpsyc.61.4.354.Google Scholar
  244. Zanelli, J., Reichenberg, A., Morgan, K., Fearon, P., Kravariti, E., Dazzan, P., et al. (2010). Specific and generalized neuropsychological deficits: a comparison of patients with various first-episode psychosis presentations. The American Journal of Psychiatry, 167(1), 78–85.  https://doi.org/10.1176/appi.ajp.2009.09010118.Google Scholar
  245. Zaninotto, L., Guglielmo, R., Calati, R., Ioime, L., Camardese, G., Janiri, L., et al. (2015). Cognitive markers of psychotic unipolar depression: a meta-analytic study. Journal of Affective Disorders, 174, 580–588.  https://doi.org/10.1016/j.jad.2014.11.027.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Julia M. Sheffield
    • 1
    Email author
  • Nicole R. Karcher
    • 2
  • Deanna M. Barch
    • 2
    • 3
    • 4
  1. 1.Department of Psychiatry & Behavioral SciencesVanderbilt University Medical CenterNashvilleUSA
  2. 2.Department of Psychological & Brain SciencesWashington University St. LouisSt. LouisUSA
  3. 3.Department of PsychiatryWashington University in St. LouisSt. LouisUSA
  4. 4.Department of RadiologyWashington University in St. LouisSt. LouisUSA

Personalised recommendations