Advertisement

Mitophagy in the Hippocampus Is Excessive Activated After Cardiac Arrest and Cardiopulmonary Resuscitation

  • Yang Huang
  • Xuhui Gao
  • Xiang Zhou
  • Biao Xie
  • Yu Zhang
  • Jian Zhu
  • ShuiBo ZhuEmail author
Original Paper
  • 36 Downloads

Abstract

This study examined the activation of mitophagy following cardiac arrest (CA) and cardiopulmonary resuscitation (CPR) and the relationship between the change with time and apoptosis. Main methods: The male Sprague–Dawley rats were randomized into four groups: Sham group, CPR24h group, CPR48h group, CPR72h group. The rat model of cardiac arrest was established by asphyxiation. We employed western blot to analyze the levels of mitophagy related proteins of hippocampus, JC-1 to detect mitochondrial membrane potential (MMP) and flow cytometry to measure the rate of apoptosis of hippocampal neurons. Moreover, we also intuitively observed the occurrence of mitophagy through electron microscopy. Key findings: The results showed that the levels of TOMM20 and Tim23 protein were significantly decreased after CPR, which were more remarkable following 72 h of CPR. However, the protein levels of dynamin related protein 1 (Drp1) and cytochrome C (Cyt-c) were strongly up-regulated after CPR. Meanwhile, the hippocampal MMP decreased gradually with time after CPR. Furthermore, we more intuitively verified the activation of mitophagy through electron microscopy. In addition, the rats of apoptosis rate of hippocampus after CPR were significantly increased, which were gradually enhanced over time from 24 h until at least 72 h following CPR. Significance: with the enhancement of mitophagy, the apoptosis of hippocampal neurons was gradually enhanced, which suggested mitophagy may be excessive activated and aggravating brain damage after CA and CPR.

Keywords

Cardiac arrest Cardiopulmonary resuscitation Mitophagy Apoptosis Hippocampus Ischemic reperfusion injury 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 81471831). We thank the Laboratory of cardiac surgery of Tongji Medical College of HuaZhong University of Science and Technology for the help of providing experimental equipment and technical guidance.

Compliance with Ethical Standards

Conflicts of interest

All the authors declare that they have no competing interests.

References

  1. 1.
    Lu X, Ma L, Sun S et al (2014) The effects of the rate of postresuscitation rewarming following hypothermia on outcomes of cardiopulmonary resuscitation in a rat model. Crit Care Med 42:e106–e113PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Souza LL, Duchene J, Todiras M et al (2014) Receptor MAS protects mice against hypothermia and mortality induced by endotoxemia. Shock 41:331–336PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Ding L, Gao X, Yu S, Yang J (2014) Effects of mild and moderate hypothemia therapy on expression of cerebral neuron apoptosis related proteins and glial fiber acidic protein after rat cardio-pulmonary resuscitation. Cell Biochem Biophys 70:1519–1525PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Diskin FJ, Camp-Rogers T, Peberdy MA, Ornato JP, Kurz MC (2014) External validation of termination of resuscitation guidelines in the setting of intra-arrest cold saline, mechanical CPR, and comprehensive post resuscitation care. Resuscitation 85:910–914PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Mangla A, Daya MR, Gupta S (2014) Post-resuscitation care for survivors of cardiac arrest. Indian Heart J 66(Suppl 1):S105–S112PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Wang P, Li Y, Yang Z et al (2018) Inhibition of dynamin-related protein 1 has neuroprotective effect comparable with therapeutic hypothermia in a rat model of cardiac arrest. Transl Res 194:68–78PubMedCrossRefGoogle Scholar
  7. 7.
    Tang YC, Tian HX, Yi T, Chen HB (2016) The critical roles of mitophagy in cerebral ischemia. Protein Cell 7:699–713PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Cui D, Shang H, Zhang X, Jiang W, Jia X (2016) Cardiac arrest triggers hippocampal neuronal death through autophagic and apoptotic pathways. Sci Rep 6:27642PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Rosenthal RE, Silbergleit R, Hof PR, Haywood Y, Fiskum G (2003) Hyperbaric oxygen reduces neuronal death and improves neurological outcome after canine cardiac arrest. Stroke 34:1311–1316PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Witter MP (2007) The perforant path: projections from the entorhinal cortex to the dentate gyrus. Prog Brain Res 163:43–61PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Corbett D, Nurse S (1998) The problem of assessing effective neuroprotection in experimental cerebral ischemia. Prog Neurobiol 54:531–548PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Yuan Y, Zhang X, Zheng Y, Chen Z (2015) Regulation of mitophagy in ischemic brain injury. Neurosci Bull 31:395–406PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Shi RY, Zhu SH, Li V et al (2014) BNIP3 interacting with LC3 triggers excessive mitophagy in delayed neuronal death in stroke. CNS Neurosci Ther 20:1045–1055PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Gazmuri RJ, Radhakrishnan J (2012) Protecting mitochondrial bioenergetic function during resuscitation from cardiac arrest. Crit Care Clin 28:245–270PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Lesnefsky EJ, Moghaddas S, Tandler B, Kerner J, Hoppel CL (2001) Mitochondrial dysfunction in cardiac disease: ischemia–reperfusion, aging, and heart failure. J Mol Cell Cardiol 33:1065–1089PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Zhou X, Yong L, Huang Y et al (2018) The protective effects of distal ischemic treatment on apoptosis and mitochondrial permeability in the hippocampus after cardiopulmonary resuscitation. J Cell Physiol 233:6902–6910PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Liu K, Sun Y, Gu Z et al (2013) Mitophagy in ischaemia/reperfusion induced cerebral injury. Neurochem Res 38:1295–1300PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Lu J, Qian HY, Liu LJ et al (2014) Mild hypothermia alleviates excessive autophagy and mitophagy in a rat model of asphyxial cardiac arrest. Neurol Sci 35:1691–1699PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Feng J, Chen X, Guan B et al (2018) Inhibition of peroxynitrite-induced mitophagy activation attenuates cerebral ischemia-reperfusion injury. Mol Neurobiol 55:6369–6386PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Gao CJ, Li JP, Wang W et al (2010) Effects of intracerebroventricular application of the delta opioid receptor agonist [D-Ala2, D-Leu5] enkephalin on neurological recovery following asphyxial cardiac arrest in rats. Neuroscience 168:531–542PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Li F, Tan J, Zhou F, Hu Z, Yang B (2018) Heat shock protein B8 (HSPB8) reduces oxygen-glucose deprivation/reperfusion injury via the induction of mitophagy. Cell Physiol Biochem 48:1492–1504PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Mondal NK, Behera J, Kelly KE et al (2019) Tetrahydrocurcumin epigenetically mitigates mitochondrial dysfunction in brain vasculature during ischemic stroke. Neurochem Int 122:120–138PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Xu N, Meng H, Liu T et al (2018) TRPC1 deficiency exacerbates cerebral ischemia/reperfusion-induced neurological injury by potentiating Nox4-derived reactive oxygen species generation. Cell Physiol Biochem 51:1723–1738PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Ulamek-Koziol M, Kocki J, Bogucka-Kocka A et al (2017) Autophagy, mitophagy and apoptotic gene changes in the hippocampal CA1 area in a rat ischemic model of Alzheimer's disease. Pharmacol Rep 69:1289–1294PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Ulamek-Koziol M, Kocki J, Bogucka-Kocka A et al (2016) Dysregulation of autophagy, mitophagy, and apoptotic genes in the medial temporal lobe cortex in an ischemic model of Alzheimer's Disease. J Alzheimers Dis 54:113–121PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Kilkenny C, Browne WJ, Cuthill IC, Emerson M, Altman DG (2012) Improving bioscience research reporting: the ARRIVE guidelines for reporting animal research. Osteoarthritis Cartilage 20:256–260PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Idris AH, Becker LB, Ornato JP et al (1996) Utstein-style guidelines for uniform reporting of laboratory CPR research. A statement for healthcare professionals from a Task Force of the American Heart Association, the American College of Emergency Physicians, the American College of Cardiology, the European Resuscitation Council, the Heart and Stroke Foundation of Canada, the Institute of Critical Care Medicine, the Safar Center for Resuscitation Research, and the Society for Academic Emergency Medicine. Resuscitation 33:69–84PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Zhou X, Liu Y, Huang Y et al (2017) Hypertonic saline infusion suppresses apoptosis of hippocampal cells in a rat model of cardiopulmonary resuscitation. Sci Rep 7:5783PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Katz L, Ebmeyer U, Safar P, Radovsky A, Neumar R (1995) Outcome model of asphyxial cardiac arrest in rats. J Cereb Blood Flow Metab 15:1032–1039PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Chen MH, Lu JY, Xie L, Zheng JH, Song FQ (2010) What is the optimal dose of epinephrine during cardiopulmonary resuscitation in a rat model? Am J Emerg Med 28:284–290PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Lan R, Wu JT, Wu T et al (2018) Mitophagy is activated in brain damage induced by cerebral ischemia and reperfusion via the PINK1/Parkin/p62 signalling pathway. Brain Res Bull 142:63–77PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Ma D, Feng L, Deng F, Feng JC (2017) Overview of experimental and clinical findings regarding the neuroprotective effects of cerebral ischemic postconditioning. Biomed Res Int 2017:6891645PubMedPubMedCentralGoogle Scholar
  33. 33.
    Perrelli MG, Pagliaro P, Penna C (2011) Ischemia/reperfusion injury and cardioprotective mechanisms: role of mitochondria and reactive oxygen species. World J Cardiol 3:186–200PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Starkov AA (2008) The role of mitochondria in reactive oxygen species metabolism and signaling. Ann N Y Acad Sci 1147:37–52PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Wang K, Klionsky DJ (2011) Mitochondria removal by autophagy. Autophagy 7:297–300PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Li Q, Zhang T, Wang J et al (2014) Rapamycin attenuates mitochondrial dysfunction via activation of mitophagy in experimental ischemic stroke. Biochem Biophys Res Commun 444:182–188PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Li Y, Wang P, Wei J et al (2015) Inhibition of Drp1 by Mdivi-1 attenuates cerebral ischemic injury via inhibition of the mitochondria-dependent apoptotic pathway after cardiac arrest. Neuroscience 311:67–74PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Buhlman L, Damiano M, Bertolin G et al (2014) Functional interplay between Parkin and Drp1 in mitochondrial fission and clearance. Biochim Biophys Acta 1843:2012–2026PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Kageyama Y, Hoshijima M, Seo K et al (2014) Parkin-independent mitophagy requires Drp1 and maintains the integrity of mammalian heart and brain. Embo J 33:2798–2813PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Correa F, Soto V, Zazueta C (2007) Mitochondrial permeability transition relevance for apoptotic triggering in the post-ischemic heart. Int J Biochem Cell Biol 39:787–798PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Wang CH, Wu SB, Wu YT, Wei YH (2013) Oxidative stress response elicited by mitochondrial dysfunction: implication in the pathophysiology of aging. Exp Biol Med (Maywood) 238:450–460CrossRefGoogle Scholar
  42. 42.
    Yin J, Guo J, Zhang Q et al (2018) Doxorubicin-induced mitophagy and mitochondrial damage is associated with dysregulation of the PINK1/parkin pathway. Toxicol In Vitro 51:1–10PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Yang Huang
    • 1
    • 2
  • Xuhui Gao
    • 2
  • Xiang Zhou
    • 3
  • Biao Xie
    • 1
  • Yu Zhang
    • 2
  • Jian Zhu
    • 2
  • ShuiBo Zhu
    • 1
    • 2
    Email author
  1. 1.Southern Medical UniversityGuangzhouChina
  2. 2.Department of Thoracic Cardiovascular SurgeryGeneral Hospital of Central Theater CommandWuhanChina
  3. 3.Department of AnesthesiologyGeneral Hospital of Central Theater CommandWuhanChina

Personalised recommendations