Advertisement

Neurochemical Research

, Volume 44, Issue 12, pp 2843–2855 | Cite as

Protective Effects of Ursolic Acid Against Cytotoxicity Induced by Corticosterone: Role of Protein Kinases

  • Ana B. Ramos-Hryb
  • Nicolle Platt
  • Andiara E. Freitas
  • Isabella A. Heinrich
  • Manuela G. López
  • Rodrigo B. Leal
  • Manuella P. Kaster
  • Ana Lúcia S. RodriguesEmail author
Original Paper
  • 88 Downloads

Abstract

Neuronal hippocampal death can be induced by exacerbated levels of cortisol, a condition usually observed in patients with Major depressive disorder (MDD). Previous in vitro and in vivo studies showed that ursolic acid (UA) elicits antidepressant and neuroprotective properties. However, the protective effects of UA against glucocorticoid-induced cytotoxicity have never been addressed. Using an in vitro model of hippocampal cellular death induced by elevated levels of corticosterone, we investigated if UA prevents corticosterone-induced cytotoxicity in HT22 mouse hippocampal derived cells. Concentrations lower than 25 µM UA did not alter cell viability. Co-incubation with UA for 48 h was able to protect HT22 cells from the reduction on cell viability and from the increase in apoptotic cells induced by corticosterone. Inhibition of protein kinase A (PKA), protein kinase C (PKC) and, Ca2+/calmodulin-dependent protein kinase II (CaMKII), but not phosphoinositide 3-kinase(PI3K), by using the pharmacological the inhibitors: H-89, chelerythrine, KN-62, and LY294002, respectively totally abolished the cytoprotective effects of UA. Finally, UA abrogated the reduction in phospho-extracellular signal–regulated kinases 1 and 2 (ERK1/2) but not in phospho-c-Jun kinases induced by corticosterone. These results indicate that the protective effect of UA against the cytotoxicity induced by corticosterone in HT22 cells may involve PKA, PKC, CaMKII, and ERK1/2 activation. The cytoprotective potential of UA against corticosterone-induced cytotoxicity and its ability to modulate intracellular signaling pathways involved in cell proliferation and survival suggest that UA may be a relevant strategy to manage stress-related disorders such as MDD.

Keywords

Corticosterone Cytotoxicity HT22 cells Neuroprotection Protein kinase Ursolic acid 

Notes

Acknowledgements

The technical support of “Laboratório Multiusuário de Estudos em Biologia (LAMEB)” from Universidade Federal de Santa Catarina and technicians of the “Unidad de Citometría” from Universidad Autónoma de Madrid are acknowledged. This study was supported by the Financiadora de Estudos e Projetos (FINEP) research grant “Rede Instituto Brasileiro de Neurociência (IBN-Net/CNPq)”, Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Fundação de Amparo à Pesquisa e Inovação do Estado de Santa Catarina (FAPESC), “Núcleo de Excelência em Neurociências Aplicadas de Santa Catarina (NENASC)” Project/PRONEX Program CNPq/FAPESC (Brazil). ALSR, MPK, and RBL are recipients of Research Scholarship from CNPq. The experiments conducted in the Instituto Teófilo Hernando by ABRH were supported by the Grant “Proyecto de Cooperación Interuniversitaria UAM-Santander con América Latina” (CEAL-AL/2015-05). MGL is the recipient of a scholarship from the Spanish Ministry of Economy and Competence Ref. SAF2015-63935R.

Compliance with Ethical Standards

Conflicts of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Aschbacher K, Epel E, Wolkowitz OM, Prather AA, Puterman E, Dhabhar FS (2012) Maintenance of a positive outlook during acute stress protects against pro-inflammatory reactivity and future depressive symptoms. Brain Behav Immun 26(2):346–352PubMedGoogle Scholar
  2. 2.
    Cassano P, Fava M (2002) Depression and public health: an overview. J Psychosom Res 53(4):849–857PubMedGoogle Scholar
  3. 3.
    Hunter RM, Nazareth I, Morris S, King M (2013) Modelling the cost-effectiveness of preventing major depression in general practice patients. Psychol Med 44(7):1381–1390PubMedPubMedCentralGoogle Scholar
  4. 4.
    Brown GW, Harris T (1978) Social origins of depression: a reply. Psychol Med 8(4):577–588PubMedGoogle Scholar
  5. 5.
    Gold PW, Goodwin FK, Chrousos GP (1988) Clinical and biochemical manifestations of depression. Relation to the neurobiology of stress (1). N Engl J Med 319(6):348–353PubMedGoogle Scholar
  6. 6.
    Sapolsky RM, Uno H, Rebert CS, Finch CE (1990) Hippocampal damage associated with prolonged glucocorticoid exposure in primates. J Neurosci 10(9):2897–2902PubMedPubMedCentralGoogle Scholar
  7. 7.
    Uno H, Tarara R, Else JG, Suleman MA, Sapolsky RM (1989) Hippocampal damage associated with prolonged and fatal stress in primates. J Neurosci 9(5):1705–1711PubMedPubMedCentralGoogle Scholar
  8. 8.
    Sapolsky RM, Krey LC, McEwen BS (1985) Prolonged glucocorticoid exposure reduces hippocampal neuron number: implications for aging. J Neurosci 5(5):1222–1227PubMedPubMedCentralGoogle Scholar
  9. 9.
    Greisen MH, Altar CA, Bolwig TG, Whitehead R, Wörtwein G (2005) Increased adult hippocampal brain-derived neurotrophic factor and normal levels of neurogenesis in maternal separation rats. J Neurosci Res 79(6):772–778PubMedGoogle Scholar
  10. 10.
    Smith MA, Makino S, Kvetnansky R, Post RM (1995) Stress and glucocorticoids affect the expression of brain-derived neurotrophic factor and neurotrophin-3 mRNAs in the hippocampus. J Neurosci 15(3Pt1):1768–1777PubMedPubMedCentralGoogle Scholar
  11. 11.
    Czéh B, Michaelis T, Watanabe T, Frahm J, de Biurrun G, van Kampen M, Bartolomucci A, Fuchs E (2001) Stress-induced changes in cerebral metabolites, hippocampal volume, and cell proliferation are prevented by antidepressant treatment with tianeptine. Proc Natl Acad Sci USA 98(22):12796–12801PubMedGoogle Scholar
  12. 12.
    Lucassen PJ, Vollmann-Honsdorf GK, Gleisberg M, Czéh B, De Kloet ER, Fuchs E (2001) Chronic psychosocial stress differentially affects apoptosis in hippocampal subregions and cortex of the adult tree shrew. Eur J Neurosci 14(1):161–166PubMedGoogle Scholar
  13. 13.
    Krishnan V, Nestler EJ (2011) Animal models of depression: molecular perspectives. Curr Top Behav Neurosci 7:121–147PubMedPubMedCentralGoogle Scholar
  14. 14.
    Uno H, Eisele S, Sakai A, Shelton S, Baker E, DeJesus O, Holden J (1994) Neurotoxicity of glucocorticoids in the primate brain. Horm Behav 28(4):336–348PubMedGoogle Scholar
  15. 15.
    Lee HJ, Kim JW, Yim SV, Kim MJ, Kim SA, Kim YJ, Kim CJ, Chung JH (2001) Fluoxetine enhances cell proliferation and prevents apoptosis in dentate gyrus of maternally separated rats. Mol Psychiatry 6(6):610, 725–618Google Scholar
  16. 16.
    Moretti M, Colla A, de Oliveira Balen G, dos Santos DB, Budni J, de Freitas AE, Farina M, Rodrigues ALS (2012) Ascorbic acid treatment, similarly to fluoxetine, reverses depressive-like behavior and brain oxidative damage induced by chronic unpredictable stress. J Psychiatr Res 46(3):331–340PubMedGoogle Scholar
  17. 17.
    Vythilingam M, Heim C, Newport J, Miller AH, Anderson E, Bronen R, Brummer M, Staib L, Vermetten E, Charney DS, Nemeroff CB, Bremner JD (2002) Childhood trauma associated with smaller hippocampal volume in women with major depression. Am J Psychiatry 159(12):2072–2080PubMedPubMedCentralGoogle Scholar
  18. 18.
    Gilbertson MW, Shenton ME, Ciszewski A, Kasai K, Lasko NB, Orr SP, Pitman RK (2002) Smaller hippocampal volume predicts pathologic vulnerability to psychological trauma. Nat Neurosci 5(11):1242–1247PubMedPubMedCentralGoogle Scholar
  19. 19.
    Bremner JD, Randall P, Scott TM, Bronen RA, Seibyl JP, Southwick SM, Delaney RC, McCarthy G, Charney DS, Innis RB (1995) MRI-based measurement of hippocampal volume in patients with combat-related posttraumatic stress disorder. Am J Psychiatry 152(7):973–981PubMedPubMedCentralGoogle Scholar
  20. 20.
    Behl C, Lezoualc’h F, Trapp T, Widmann M, Skutella T, Holsboer F (1997) Glucocorticoids enhance oxidative stress-induced cell death in hippocampal neurons in vitro. Endocrinology 138(1):101–106PubMedGoogle Scholar
  21. 21.
    Freitas AE, Egea J, Buendía I, Navarro E, Rada P, Cuadrado A, Rodrigues ALS, López MG (2015) Agmatine induces Nrf2 and protects against corticosterone effects in hippocampal neuronal cell line. Mol Neurobiol 51(3):1504–1519PubMedGoogle Scholar
  22. 22.
    Xu Y, Zhang C, Wang R, Govindarajan SS, Barish PA, Vernon MM, Fu C, Acharya AP, Chen L, Boykin E, Yu J, Pan J, O’Donnell JM, Ogle WO (2011) Corticosterone induced morphological changes of hippocampal and amygdaloid cell lines are dependent on 5-HT7 receptor related signal pathway. Neuroscience 182:71–81PubMedGoogle Scholar
  23. 23.
    Xu Y, Pan J, Chen L, Zhang C, Sun J, Li J, Nguyen L, Nair N, Zhang H, O’Donnell JM (2013) Phosphodiesterase-2 inhibitor reverses corticosterone-induced neurotoxicity and related behavioural changes via cGMP/PKG dependent pathway. Int J Neuropsychopharmacol 16(4):835–847PubMedGoogle Scholar
  24. 24.
    Zheng Y, Huang J, Tao L, Shen Z, Li H, Mo F, Wang X, Wang S, Shen H (2015) Corticosterone increases intracellular Zn(2+) release in hippocampal HT-22 cells. Neurosci Lett 588:172–177PubMedGoogle Scholar
  25. 25.
    Behl C, Trapp T, Skutella T, Holsboer F (1997) Protection against oxidative stress-induced neuronal cell death–a novel role for RU486. Eur J Neurosci 9(5):912–920PubMedGoogle Scholar
  26. 26.
    Ramos-Hryb AB, Pazini FL, Kaster MP, Rodrigues ALS (2017) Therapeutic potential of ursolic acid to manage neurodegenerative and psychiatric diseases. CNS Drugs 31(12):1029–1041PubMedGoogle Scholar
  27. 27.
    Ramos-Hryb AB, Cunha MP, Kaster MP, Rodrigues ALS (2017) Chapter 6—natural polyphenols and terpenoids for depression treatment: current status. In: Atta-ur-Rahman (ed) Studies in natural products chemistry. Elsevier, Amsterdam, pp 181–221Google Scholar
  28. 28.
    López-Hortas L, Pérez-Larrán P, González-Muñoz MJ, Falqué E, Domínguez H (2018) Recent developments on the extraction and application of ursolic acid. A review. Food Res Int 103:130–149PubMedGoogle Scholar
  29. 29.
    Machado DG, Neis VB, Balen GO, Colla A, Cunha MP, Dalmarco JB, Pizzolatti MG, Prediger RD, Rodrigues AL (2012) Antidepressant-like effect of ursolic acid isolated from Rosmarinus officinalis L. in mice: evidence for the involvement of the dopaminergic system. Pharmacol Biochem Behav 103(2):204–211PubMedGoogle Scholar
  30. 30.
    Ramos-Hryb AB, Cunha MP, Pazini FL, Lieberknecht V, Prediger RDS, Kaster MP, Rodrigues ALS (2017) Ursolic acid affords antidepressant-like effects in mice through the activation of PKA, PKC, CAMK-II and MEK1/2. Pharmacol Rep 69(6):1240–1246PubMedGoogle Scholar
  31. 31.
    Colla AR, Oliveira A, Pazini FL, Rosa JM, Manosso LM, Cunha MP, Rodrigues ALS (2014) Serotonergic and noradrenergic systems are implicated in the antidepressant-like effect of ursolic acid in mice. Pharmacol Biochem Behav 124:108–116PubMedGoogle Scholar
  32. 32.
    Colla AR, Rosa JM, Cunha MP, Rodrigues ALS (2015) Anxiolytic-like effects of ursolic acid in mice. Eur J Pharmacol 758:171–176PubMedGoogle Scholar
  33. 33.
    Taviano MF, Miceli N, Monforte MT, Tzakou O, Galati EM (2007) Ursolic acid plays a role in Nepeta sibthorpii Bentham CNS depressing effects. Phytother Res 21(4):382–385PubMedGoogle Scholar
  34. 34.
    Jeon SJ, Park HJ, Gao Q, Pena IJ, Park SJ, Lee HE, Woo H, Kim HJ, Cheong JH, Hong E, Ryu JH (2015) Ursolic acid enhances pentobarbital-induced sleeping behaviors via GABAergic neurotransmission in mice. Eur J Pharmacol 762:443–448PubMedGoogle Scholar
  35. 35.
    Richard EJ, Illuri R, Bethapudi B, Anandhakumar S, Bhaskar A, Chinampudur Velusami C, Mundkinajeddu D, Agarwal A (2016) Anti-stress activity of Ocimum sanctum: possible effects on hypothalamic-pituitary-adrenal axis. Phytother Res 30(5):805–814Google Scholar
  36. 36.
    Rollinger JM, Kratschmar DV, Schuster D, Pfisterer PH, Gumy C, Aubry EM, Brandstötter S, Stuppner H, Wolber G, Odermatt A (2010) 11beta-Hydroxysteroid dehydrogenase 1 inhibiting constituents from Eriobotrya japonica revealed by bioactivity-guided isolation and computational approaches. Bioorg Med Chem 18(4):1507–1515PubMedGoogle Scholar
  37. 37.
    Denizot F, Lang R (1986) Rapid colorimetric assay for cell growth and survival Modifications to the tetrazolium dye procedure giving improved sensitivity and reliability. J Immunol Methods 89(2):271–277PubMedGoogle Scholar
  38. 38.
    Riccardi C, Nicoletti I (2006) Analysis of apoptosis by propidium iodide staining and flow cytometry. Nat Protoc 1(3):1458–1461PubMedGoogle Scholar
  39. 39.
    Liu Q, Qiu J, Liang M, Golinski J, van Leyen K, Jung JE, You Z, Lo EH, Degterev A, Whalen MJ (2014) Akt and mTOR mediate programmed necrosis in neurons. Cell Death Dis 5:e1084PubMedPubMedCentralGoogle Scholar
  40. 40.
    Peterson GL (1977) A simplification of the protein assay method of Lowry et al. which is more generally applicable. Anal Biochem 83(2):346–356PubMedGoogle Scholar
  41. 41.
    Mao QQ, Huang Z, Ip SP, Xian YF, Che CT (2012) Protective effects of piperine against corticosterone-induced neurotoxicity in PC12 cells. Cell Mol Neurobiol 32(4):531–537PubMedGoogle Scholar
  42. 42.
    Xu MF, Xiong YY, Liu JK, Qian JJ, Zhu L, Gao J (2012) Asiatic acid, a pentacyclic triterpene in Centella asiatica, attenuates glutamate-induced cognitive deficits in mice and apoptosis in SH-SY5Y cells. Acta Pharmacol Sin 33(5):578–587PubMedPubMedCentralGoogle Scholar
  43. 43.
    Yang L, Calingasan NY, Thomas B, Chaturvedi RK, Kiaei M, Wille EJ, Liby KT, Williams C, Royce D, Risingsong R, Musiek ES, Morrow JD, Sporn M, Beal MF (2009) Neuroprotective effects of the triterpenoid, CDDO methyl amide, a potent inducer of Nrf2-mediated transcription. PLoS ONE 4(6):e5757PubMedPubMedCentralGoogle Scholar
  44. 44.
    Zhao Q, Ye J, Wei N, Fong C, Dong X (2016) Protection against MPP(+)-induced neurotoxicity in SH-SY5Y cells by tormentic acid via the activation of PI3-K/Akt/GSK3β pathway. Neurochem Int 97:117–123PubMedGoogle Scholar
  45. 45.
    Gallagher P, Young AH (2006) Mifepristone (RU-486) treatment for depression and psychosis: a review of the therapeutic implications. Neuropsychiatr Dis Treat 2(1):33–42PubMedPubMedCentralGoogle Scholar
  46. 46.
    Heo HJ, Cho HY, Hong B, Kim HK, Heo TR, Kim EK, Kim SK, Kim CJ, Shin DH (2002) Ursolic acid of Origanum majorana L. reduces Abeta-induced oxidative injury. Mol Cells 13(1):5–11PubMedGoogle Scholar
  47. 47.
    Hong SY, Jeong WS, Jun M (2012) Protective effects of the key compounds isolated from Corni fructus against β-amyloid-induced neurotoxicity in PC12 cells. Molecules 17(9):10831–10845PubMedPubMedCentralGoogle Scholar
  48. 48.
    Shih YH, Chein YC, Wang JY, Fu YS (2004) Ursolic acid protects hippocampal neurons against kainate-induced excitotoxicity in rats. Neurosci Lett 362(2):136–140PubMedGoogle Scholar
  49. 49.
    Cha HJ, Park MT, Chung HY, Kim ND, Sato H, Seiki M, Kim KW (1998) Ursolic acid-induced down-regulation of MMP-9 gene is mediated through the nuclear translocation of glucocorticoid receptor in HT1080 human fibrosarcoma cells. Oncogene 16(6):771–778PubMedGoogle Scholar
  50. 50.
    Mortiboys H, Aasly J, Bandmann O (2013) Ursocholanic acid rescues mitochondrial function in common forms of familial Parkinson’s disease. Brain 136(Pt10):3038–3050PubMedGoogle Scholar
  51. 51.
    Yarosh DB, Both D, Brown D (2000) Liposomal ursolic acid (merotaine) increases ceramides and collagen in human skin. Horm Res 54(5–6):318–321PubMedGoogle Scholar
  52. 52.
    Maiyar AC, Phu PT, Huang AJ, Firestone GL (1997) Repression of glucocorticoid receptor transactivation and DNA binding of a glucocorticoid response element within the serum/glucocorticoid-inducible protein kinase (sgk) gene promoter by the p53 tumor suppressor protein. Mol Endocrinol 11(3):312–329PubMedGoogle Scholar
  53. 53.
    Lang F, Stournaras C (2013) Serum and glucocorticoid inducible kinase, metabolic syndrome, inflammation, and tumor growth. Hormones 12(2):160–171PubMedGoogle Scholar
  54. 54.
    David S, Kalb RG (2005) Serum/glucocorticoid-inducible kinase can phosphorylate the cyclic AMP response element binding protein, CREB. FEBS Lett 579(6):1534–1538PubMedGoogle Scholar
  55. 55.
    Bonni A, Brunet A, West AE, Datta SR, Takasu MA, Greenberg ME (1999) Cell survival promoted by the Ras-MAPK signaling pathway by transcription-dependent and -independent mechanisms. Science 286(5443):1358–1362PubMedGoogle Scholar
  56. 56.
    Kumar S, Boehm J, Lee JC (2003) p38 MAP kinases: key signalling molecules as therapeutic targets for inflammatory diseases. Nat Rev Drug Discov 2(9):717–726PubMedGoogle Scholar
  57. 57.
    Rössler OG, Giehl KM, Thiel G (2004) Neuroprotection of immortalized hippocampal neurones by brain-derived neurotrophic factor and Raf-1 protein kinase: role of extracellular signal-regulated protein kinase and phosphatidylinositol 3-kinase. J Neurochem 88(5):1240–1252PubMedGoogle Scholar
  58. 58.
    Pace TW, Hu F, Miller AH (2007) Cytokine-effects on glucocorticoid receptor function: relevance to glucocorticoid resistance and the pathophysiology and treatment of major depression. Brain Behav Immun 21(1):9–19PubMedGoogle Scholar
  59. 59.
    Mercier G, Lennon AM, Renouf B, Dessouroux A, Ramaugé M, Courtin F, Pierre M (2004) MAP kinase activation by fluoxetine and its relation to gene expression in cultured rat astrocytes. J Mol Neurosci 24(2):207–216PubMedGoogle Scholar
  60. 60.
    Leem YH, Yoon SS, Kim YH, Jo SA (2014) Disrupted MEK/ERK signaling in the medial orbital cortex and dorsal endopiriform nuclei of the prefrontal cortex in a chronic restraint stress mouse model of depression. Neurosci Lett 580:163–168PubMedGoogle Scholar
  61. 61.
    Zou Y, Wang B, Fu W, Zhou S, Nie Y, Tian S (2016) Apelin-13 protects PC12 cells from corticosterone-induced apoptosis through PI3K and ERKs activation. Neurochem Res 41(7):1635–1644PubMedGoogle Scholar
  62. 62.
    Wu W, Pew T, Zou M, Pang D, Conzen SD (2005) Glucocorticoid receptor-induced MAPK phosphatase-1 (MPK-1) expression inhibits paclitaxel-associated MAPK activation and contributes to breast cancer cell survival. J Biol Chem 280(6):4117–4724PubMedGoogle Scholar
  63. 63.
    Ovesná Z, Kozics K, Slamenová D (2006) Protective effects of ursolic acid and oleanolic acid in leukemic cells. Mutat Res 600(1–2):131–137PubMedGoogle Scholar
  64. 64.
    Lu CC, Huang BR, Liao PJ, Yen GC (2014) Ursolic acid triggers nonprogrammed death (necrosis) in human glioblastoma multiforme DBTRG-05MG cells through MPT pore opening and ATP decline. Mol Nutr Food Res 58(11):2146–2156PubMedGoogle Scholar
  65. 65.
    Liby KT, Yore MM, Sporn MB (2007) Triterpenoids and rexinoids as multifunctional agents for the prevention and treatment of cancer. Nat Rev Cancer 7(5):357–369PubMedGoogle Scholar
  66. 66.
    Tannock LR (2011) Ursolic acid effect on atherosclerosis: apples and apples, or apples and oranges? Atherosclerosis 219(2):397–398PubMedGoogle Scholar
  67. 67.
    Nikoletopoulou V, Markaki M, Palikaras K, Tavernarakis N (2013) Crosstalk between apoptosis, necrosis and autophagy. Biochim Biophys Acta 1833(12):3448–3459PubMedGoogle Scholar
  68. 68.
    Yakovlev AG, Faden AI (2004) Mechanisms of neural cell death: implications for development of neuroprotective treatment strategies. NeuroRx 1(1):5–16PubMedPubMedCentralGoogle Scholar
  69. 69.
    Csermely P, Agoston V, Pongor S (2005) The efficiency of multi-target drugs: the network approach might help drug design. Trends Pharmacol Sci 26(4):178–182PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Biochemistry, Centro de Ciências BiológicasUniversidade Federal de Santa CatarinaFlorianópolisBrazil
  2. 2.Department of Pharmacology, Faculty of Medicine, Instituto Teófilo HernandoUniversidad Autónoma de MadridMadridSpain
  3. 3.Instituto de Biología y Medicina Experimental (IBYME)-CONICETBuenos AiresArgentina

Personalised recommendations