Advertisement

Role of PGC-1α in Mitochondrial Quality Control in Neurodegenerative Diseases

  • Qi Zhang
  • Yu-Hong Lei
  • Jue-Pu Zhou
  • Ye-Ye Hou
  • Zheng Wan
  • Hong-Lei Wang
  • Hao MengEmail author
Review

Abstract

As one of the major cell organelles responsible for ATP production, it is important that neurons maintain mitochondria with structural and functional integrity; this is especially true for neurons with high metabolic requirements. When mitochondrial damage occurs, mitochondria are able to maintain a steady state of functioning through molecular and organellar quality control, thus ensuring neuronal function. And when mitochondrial quality control (MQC) fails, mitochondria mediate apoptosis. An apparently key molecule in MQC is the transcriptional coactivator peroxisome proliferator activated receptor γ coactivator-1α (PGC-1α). Recent findings have demonstrated that upregulation of PGC-1α expression in neurons can modulate MQC to prevent mitochondrial dysfunction in certain in vivo and in vitro aging or neurodegenerative encephalopathy models, such as Huntington’s disease, Alzheimer’s disease, and Parkinson’s disease. Because mitochondrial function and quality control disorders are the basis of pathogenesis in almost all neurodegenerative diseases (NDDs), the role of PGC-1α may make it a viable entry point for the treatment of such diseases. This review focuses on multi-level MQC in neurons, as well as the regulation of MQC by PGC-1α in these major NDDs.

Keywords

Peroxisome proliferator activated receptor γ coactivator-1α Mitochondrial quality control Signaling pathway Neurodegenerative diseases Neuroprotective effects 

Notes

Funding

Funding was supported by Jilin Provincial Research Foundation for the Development of Science and Technology Projects (Grant no. 20190201152JC).

References

  1. 1.
    Chaturvedi RK, Beal MF (2013) Mitochondria targeted therapeutic approaches in Parkinson’s and Huntington’s diseases. Mol Cell Neurosci 55:101–114CrossRefPubMedGoogle Scholar
  2. 2.
    Martin LJ (2012) Chapter 11—biology of mitochondria in neurodegenerative diseases. In: Teplow DB (ed) Progress in molecular biology and translational science, vol 107. Academic, pp 355–415.  https://doi.org/10.1016/B978-0-12-385883-2.00005-9
  3. 3.
    Liu S-G, Wang Y-M, Zhang Y-J, He X-J, Ma T, Song W, Zhang Y-M (2017) ZL006 protects spinal cord neurons against ischemia-induced oxidative stress through AMPK-PGC-1α-Sirt3 pathway. Neurochem Int 108:230–237.  https://doi.org/10.1016/j.neuint.2017.04.005 CrossRefPubMedGoogle Scholar
  4. 4.
    Bayer H, Lang K, Buck E, Higelin J, Barteczko L, Pasquarelli N, Sprissler J, Lucas T, Holzmann K, Demestre M, Lindenberg KS, Danzer KM, Boeckers T, Ludolph AC, Dupuis L, Weydt P, Witting A (2017) ALS-causing mutations differentially affect PGC-1α expression and function in the brain vs. peripheral tissues. Neurobiol Dis 97:36–45.  https://doi.org/10.1016/j.nbd.2016.11.001 CrossRefPubMedGoogle Scholar
  5. 5.
    Tatsuta T, Langer T (2008) Quality control of mitochondria: protection against neurodegeneration and ageing. EMBO J 27(2):306–314CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Palikaras K, Lionaki E, Tavernarakis N (2015) Balancing mitochondrial biogenesis and mitophagy to maintain energy metabolism homeostasis. Cell Death Differ 22(9):1399–1401.  https://doi.org/10.1038/cdd.2015.86 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Seli E, Wang T, Horvath TL (2019) Mitochondrial unfolded protein response: a stress response with implications for fertility and reproductive aging. Fertil Steril 111(2):197–204.  https://doi.org/10.1016/j.fertnstert.2018.11.048 CrossRefPubMedGoogle Scholar
  8. 8.
    Fiorese CJ, Haynes CM (2017) Integrating the UPR into the mitochondrial maintenance network. Crit Rev Biochem Mol Biol 52(3):304–313CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Murphy MP, Holmgren A, Larsson NG, Halliwell B, Chang CJ, Kalyanaraman B, Rhee SG, Thornalley PJ, Partridge L, Gems D (2011) Unraveling the biological roles of reactive oxygen species. Cell Metab 13(4):361CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Cenini G, Voos W (2015) Role of mitochondrial protein quality control in oxidative stress-induced neurodegenerative diseases. Curr Alzheimer Res 13(2):164–173CrossRefGoogle Scholar
  11. 11.
    Fukada K, Zhang F, Vien A, Cashman NR, Zhu H (2004) Mitochondrial proteomic analysis of a cell line model of familial amyotrophic lateral sclerosis. Mol Cell Proteomics 3(12):1211–1223CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Matsushima Y, Goto Y, Kaguni LS (2010) Mitochondrial Lon protease regulates mitochondrial DNA copy number and transcription by selective degradation of mitochondrial transcription factor A (TFAM). Proc Natl Acad Sci USA 107(43):18410–18415CrossRefPubMedGoogle Scholar
  13. 13.
    Ylikallio E, Tyynismaa H, Tsutsui H, Ide T, Suomalainen A (2010) High mitochondrial DNA copy number has detrimental effects in mice. Hum Mol Genet 19(13):2695–2705CrossRefPubMedGoogle Scholar
  14. 14.
    Kao T-Y, Chiu Y-C, Fang WC, Cheng CW, Kuo C-Y, Juan H-F, Wu SH, Lee A-Y (2015) Mitochondrial Lon regulates apoptosis through the association with Hsp60-mtHsp70 complex. Cell Death Dis 6(2):e1642CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Otera H, Mihara K (2011) Molecular mechanisms and physiologic functions of mitochondrial dynamics. J Biochem 149(3):241–251CrossRefGoogle Scholar
  16. 16.
    Szabo A, Sumegi K, Fekete K, Hocsak E, Debreceni B, Setalo G, Kovacs K, Deres L, Kengyel A, Kovacs D, Mandl J, Nyitrai M, Febbraio MA, Gallyas F, Sumegi B (2018) Activation of mitochondrial fusion provides a new treatment for mitochondria-related diseases. Biochem Pharmacol 150:86–96.  https://doi.org/10.1016/j.bcp.2018.01.038 CrossRefPubMedGoogle Scholar
  17. 17.
    Olichon A, Baricault L, Gas N, Guillou E, Valette A, Belenguer P, Lenaers G (2003) Loss of OPA1 perturbates the mitochondrial inner membrane structure and integrity, leading to cytochrome c release and apoptosis. J Biol Chem 278(10):7743–7746CrossRefPubMedGoogle Scholar
  18. 18.
    Guillery O, Malka F, Landes T, Guillou E, Blackstone C, Lombès A, Belenguer P, Arnoult D, Rojo M (2008) Metalloprotease-mediated OPA1 processing is modulated by the mitochondrial membrane potential. Biol Cell 100(5):315–325CrossRefPubMedGoogle Scholar
  19. 19.
    Artal-Sanz M, Tavernarakis N (2009) Prohibitin and mitochondrial biology. Trends Endocrinol Metab 20(8):394–401.  https://doi.org/10.1016/j.tem.2009.04.004 CrossRefPubMedGoogle Scholar
  20. 20.
    Tatsuta T, Langer T (2017) Prohibitins. Curr Biol 27(13):R629–R631.  https://doi.org/10.1016/j.cub.2017.04.030 CrossRefPubMedGoogle Scholar
  21. 21.
    Civiletto G, Varanita T, Cerutti R, Gorletta T, Barbaro S, Marchet S, Lamperti C, Viscomi C, Scorrano L, Zeviani M (2015) Opa1 overexpression ameliorates the phenotype of two mitochondrial disease mouse models. Cell Metab 21(6):845–854CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Chen H, Chan DC (2010) Physiological functions of mitochondrial fusion. Ann NY Acad Sci 1201(1):21CrossRefPubMedGoogle Scholar
  23. 23.
    Han XJ, Lu YF, Li SA, Kaitsuka T, Sato Y, Tomizawa K, Nairn AC, Takei K, Matsui H, Matsushita M (2008) CaM kinase I alpha-induced phosphorylation of Drp1 regulates mitochondrial morphology. J Cell Biol 182(3):573–585CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Bo T, Yamamori T, Suzuki M, Sakai Y, Yamamoto K, Inanami O (2018) Calmodulin-dependent protein kinase II (CaMKII) mediates radiation-induced mitochondrial fission by regulating the phosphorylation of dynamin-related protein 1 (Drp1) at serine 616. Biochem Biophys Res Commun 495(2):1601–1607CrossRefPubMedGoogle Scholar
  25. 25.
    Stojanovski D, Koutsopoulos OS, Okamoto K, Ryan MT (2004) Levels of human Fis1 at the mitochondrial outer membrane regulate mitochondrial morphology. J Cell Sci 117:1201–1210CrossRefPubMedGoogle Scholar
  26. 26.
    Dominy J, Puigserver P (2013) Mitochondrial biogenesis through activation of nuclear signaling proteins. Cold Spring Harb Perspect Biol.  https://doi.org/10.1101/cshperspect.a015008 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Niu F, Dong J, Xu X, Zhang B, Liu B (2018) Mitochondrial division inhibitor 1 prevents early-stage induction of mitophagy and accelerated cell death in a rat model of moderate controlled cortical impact brain injury. World Neurosurg.  https://doi.org/10.1016/j.wneu.2018.10.236 CrossRefPubMedGoogle Scholar
  28. 28.
    Seo AY, Joseph AM, Dutta D, Hwang JC, Aris JP, Leeuwenburgh C (2010) New insights into the role of mitochondria in aging: mitochondrial dynamics and more. J Cell Sci 123(15):2533–2542CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Park J, Lee SB, Lee S, Kim Y, Song S, Kim S, Bae E, Kim J, Shong M, Kim JM (2006) Mitochondrial dysfunction in Drosophila PINK1 mutants is complemented by parkin. Nature 441(7097):1157–1161CrossRefPubMedGoogle Scholar
  30. 30.
    Komatsu M, Waguri S, Chiba T, Murata S, Iwata J, Tanida I, Ueno T, Koike M, Uchiyama Y, Kominami E, Tanaka K (2006) Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature 441(7095):880–884CrossRefPubMedGoogle Scholar
  31. 31.
    Narendra D, Tanaka A, Suen DF, Youle RJ (2008) Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. Autophagy 183(5):795–803Google Scholar
  32. 32.
    Jin SM, Lazarou M, Wang C, Kane LA, Narendra DP, Youle RJ (2010) Mitochondrial membrane potential regulates PINK1 import and proteolytic destabilization by PARL. J Cell Biol 191(5):933–942.  https://doi.org/10.1083/jcb.201008084 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Deas E, Plunfavreau H, Gandhi S, Desmond H, Kjaer S, Loh SHY, Renton AEM, Harvey RJ, Whitworth AJ, Martins LM (2011) PINK1 cleavage at position A103 by the mitochondrial protease PARL. Hum Mol Genet 20(5):867CrossRefPubMedGoogle Scholar
  34. 34.
    Hasson SA, Kane LA, Yamano K, Huang C-H, Sliter DA, Buehler E, Wang C, Heman-Ackah SM, Hessa T, Guha R (2013) High-content genome-wide RNAi screens identify regulators of parkin upstream of mitophagy. Nature 504(7479):291CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Matsuda N, Sato S, Shiba K, Okatsu K, Saisho K, Gautier CA, Sou YS, Saiki S, Kawajiri S, Sato F (2010) PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy. J Cell Biol 189(7):211–221CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Tang YC, Tian HX, Yi T, Chen HB (2016) The critical roles of mitophagy in cerebral ischemia. Protein Cell 7(10):699–713CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Villa E, Marchetti S, Ricci J-E (2018) No Parkin zone: mitophagy without Parkin. Trends Cell Biol 28(11):882–895.  https://doi.org/10.1016/j.tcb.2018.07.004 CrossRefPubMedGoogle Scholar
  38. 38.
    Lazarou M, Sliter DA, Kane LA, Sarraf SA, Wang C, Burman JL, Sideris DP, Fogel AI, Youle RJ (2015) The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy. Nature 524(7565):309–314CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Mclelland GL, Soubannier V, Chen CX, McBride HM, Fon EA (2014) Parkin and PINK1 function in a vesicular trafficking pathway regulating mitochondrial quality control. EMBO J 33(4):282–295PubMedPubMedCentralGoogle Scholar
  40. 40.
    Soubannier V, Rippstein P, Kaufman BA, Shoubridge EA, McBride HM (2012) Reconstitution of mitochondria derived vesicle formation demonstrates selective enrichment of oxidized cargo. PLoS ONE 7(12):e52830CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Yin XM, Ding WX (2013) The reciprocal roles of PARK2 and mitofusins in mitophagy and mitochondrial spheroid formation. Autophagy 9(11):1687–1692CrossRefPubMedGoogle Scholar
  42. 42.
    Kitada T, Asakawa S, Hattori N, Matsumine H, Yamamura Y, Minoshima S, Yokochi M, Mizuno Y, Shimizu N (1998) Mutations in the parkin gene cause autosomal recessive juvenile Parkinsonism. Nature 392(6676):605CrossRefGoogle Scholar
  43. 43.
    Dawson TM, Dawson VL (2017) Mitochondrial mechanisms of neuronal cell death: potential therapeutics. Annu Rev Pharmacol Toxicol 57(1):437CrossRefPubMedGoogle Scholar
  44. 44.
    Elrod JW, Molkentin JD (2013) Physiologic functions of cyclophilin D and the mitochondrial permeability transition pore. Circ J 77(5):1111–1122CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Ma L, Niu W, Yang S, Tian J, Luan H, Cao M, Xi W, Tu W, Jia J, Lv J (2018) Inhibition of mitochondrial permeability transition pore opening contributes to cannabinoid type 1 receptor agonist ACEA-induced neuroprotection. Neuropharmacology 135:211–222.  https://doi.org/10.1016/j.neuropharm.2018.03.024 CrossRefPubMedGoogle Scholar
  46. 46.
    Li P, Nijhawan D, Budihardjo I, Srinivasula SM, Ahmad M, Alnemri ES, Wang X (1997) Cytochrome c and dATP-dependent formation of Apaf-1/Caspase-9 complex initiates an apoptotic protease cascade. Cell 91(4):479–489.  https://doi.org/10.1016/S0092-8674(00)80434-1 CrossRefPubMedGoogle Scholar
  47. 47.
    Roth KA, Shacka JJ (2009) Apoptosis in neurodegenerative disease. In: Squire LR (ed) Encyclopedia of neuroscience. Academic, Oxford, pp 531–537.  https://doi.org/10.1016/B978-008045046-9.00486-1
  48. 48.
    Tritos N, Mastaitis J, Kokkotou E, Puigserver P, Spiegelman B, Maratos-Flier E (2003) Characterization of the peroxisome proliferator activated receptor coactivator 1 alpha (PGC 1alpha) expression in the murine brain. Brain Res 961(2):255–260CrossRefPubMedGoogle Scholar
  49. 49.
    Choi J, Batchu V, Schubert M, Castellani R, Russell J (2013) A novel PGC-1α isoform in brain localizes to mitochondria and associates with PINK1 and VDAC. Biochem Biophys Res Commun 435(4):671–677CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Zhang Y, Huypens P, Adamson AW, Chang JS, Henagan TM, Boudreau A, Lenard NR, Burk D, Klein J, Perwitz N, Shin J, Fasshauer M, Kralli A, Gettys TW (2009) Alternative mRNA splicing produces a novel biologically active short isoform of PGC-1alpha. J Biol Chem 284(47):32813–32826CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Scarpulla RC (2008) Transcriptional paradigms in mammalian mitochondrial biogenesis and function. Physiol Rev 88(2):611–638CrossRefPubMedGoogle Scholar
  52. 52.
    Franco-Iborra S, Vila M, Perier C (2018) Mitochondrial quality control in neurodegenerative diseases: focus on Parkinson’s disease and Huntington’s disease. Front Neurosci 12:342CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Jiang S, Li T, Yang Z, Yi W, Di S, Sun Y, Wang D, Yang Y (2017) AMPK orchestrates an elaborate cascade protecting tissue from fibrosis and aging. Ageing Res Rev 38:18CrossRefPubMedGoogle Scholar
  54. 54.
    Chaturvedi R, Adhihetty P, Shukla S, Hennessy T, Calingasan N, Yang L, Starkov A, Kiaei M, Cannella M, Sassone J, Ciammola A, Squitieri F, Beal M (2009) Impaired PGC-1alpha function in muscle in Huntington’s disease. Hum Mol Genet 18(16):3048–3065CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Cantó C, Gerhart-Hines Z, Feige JN, Lagouge M, Noriega L, Milne JC, Elliott PJ, Puigserver P, Auwerx J (2009) AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity. Nature 458(7241):1056–1060CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Rodgers JT, Lerin C, Haas W, Gygi SP, Spiegelman BM, Puigserver P (2005) Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1. Nature 434(7029):113–118CrossRefPubMedGoogle Scholar
  57. 57.
    Cantó C, Gerhart-Hines Z, Feige JN, Lagouge M, Noriega L, Milne JC, Elliott PJ, Puigserver P, Auwerx J (2009) AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity. Nature 458:1056.  https://doi.org/10.1038/nature07813 CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Shimizu Y, Polavarapu R, Eskla K-L, Nicholson CK, Koczor CA, Wang R, Lewis W, Shiva S, Lefer DJ, Calvert JW (2018) Hydrogen sulfide regulates cardiac mitochondrial biogenesis via the activation of AMPK. J Mol Cell Cardiol 116:29–40.  https://doi.org/10.1016/j.yjmcc.2018.01.011 CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Kelly TJ, Lerin C, Haas W, Gygi SP, Puigserver P (2009) GCN5-mediated transcriptional control of the metabolic coactivator PGC-1β through lysine acetylation. J Biol Chem 284(30):19945CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    La Rovere RML, Roest G, Bultynck G, Parys JB (2016) Intracellular Ca2+ signaling and Ca2+ microdomains in the control of cell survival, apoptosis and autophagy. Cell Calcium 60(2):74–87.  https://doi.org/10.1016/j.ceca.2016.04.005 CrossRefPubMedGoogle Scholar
  61. 61.
    Mattson MP (2012) Energy intake and exercise as determinants of brain health and vulnerability to injury and disease. Cell Metab 16(6):706CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Picard M, Mcewen BS (2014) Mitochondria impact brain function and cognition. Proc Natl Acad Sci USA 111(1):7–8CrossRefPubMedGoogle Scholar
  63. 63.
    Choi YK, Park JH, Baek Y-Y, Won M-H, Jeoung D, Lee H, Ha K-S, Kwon Y-G, Kim Y-M (2016) Carbon monoxide stimulates astrocytic mitochondrial biogenesis via L-type Ca2+ channel-mediated PGC-1α/ERRα activation. Biochem Biophys Res Commun 479(2):297–304.  https://doi.org/10.1016/j.bbrc.2016.09.063 CrossRefPubMedGoogle Scholar
  64. 64.
    Chaturvedi R, Hennessey T, Johri A, Tiwari S, Mishra D, Agarwal S, Kim Y, Beal M (2012) Transducer of regulated CREB-binding proteins (TORCs) transcription and function is impaired in Huntington’s disease. Hum Mol Genet 21(15):3474–3488CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Hu Q, Li B, Xu R, Chen D, Mu C, Fei E, Wang G (2012) The protease Omi cleaves the mitogen-activated protein kinase kinase MEK1 to inhibit microglial activation. Sci Signal 5(238):ra61CrossRefPubMedGoogle Scholar
  66. 66.
    St-Pierre J, Drori S, Uldry M, Silvaggi JM, Rhee J, Jäger S, Handschin C, Zheng K, Lin J, Yang W (2006) Suppression of reactive oxygen species and neurodegeneration by the PGC-1 transcriptional coactivators. Cell 127(2):397–408CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Rabinovitch RC, Samborska B, Faubert B, Ma EH, Gravel S-P, Andrzejewski S, Raissi TC, Pause A, St.-Pierre J, Jones RG (2017) AMPK maintains cellular metabolic homeostasis through regulation of mitochondrial reactive oxygen species. Cell Rep 21(1):1–9.  https://doi.org/10.1016/j.celrep.2017.09.026 CrossRefPubMedGoogle Scholar
  68. 68.
    Gleyzer N, Vercauteren K, Scarpulla RC (2005) Control of mitochondrial transcription specificity factors (TFB1M and TFB2M) by nuclear respiratory factors (NRF-1 and NRF-2) and PGC-1 family coactivators. Mol Cell Biol 25(4):1354–1366CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Agarwal S, Yadav A, Chaturvedi RK (2017) Peroxisome proliferator-activated receptors (PPARs) as therapeutic target in neurodegenerative disorders. Biochem Biophys Res Commun 483(4):1166–1177.  https://doi.org/10.1016/j.bbrc.2016.08.043 CrossRefPubMedGoogle Scholar
  70. 70.
    Eichner LJ, Giguère V (2011) Estrogen related receptors (ERRs): a new dawn in transcriptional control of mitochondrial gene networks. Mitochondrion 11(4):544–552.  https://doi.org/10.1016/j.mito.2011.03.121 CrossRefPubMedGoogle Scholar
  71. 71.
    Kondookamoto N (2012) Mitochondria and autophagy: critical interplay between the two homeostats. BBA Gen Subj 1820(5):595–600CrossRefGoogle Scholar
  72. 72.
    Sheng B, Wang X, Su B, Lee HG, Casadesus G, Perry G, Zhu X (2012) Impaired mitochondrial biogenesis contributes to mitochondrial dysfunction in Alzheimer’s disease. J Neurochem 120(3):419–429CrossRefPubMedGoogle Scholar
  73. 73.
    Stallons LJ, Funk JA, Schnellmann RG (2013) Mitochondrial homeostasis in acute organ failure. Curr Pathobiol Rep 1(3):169–177CrossRefGoogle Scholar
  74. 74.
    Valerio A, Bertolotti P, Delbarba A, Perego C, Dossena M, Ragni M, Spano P, Carruba MO, De Simoni MG, Nisoli E (2011) Glycogen synthase kinase-3 inhibition reduces ischemic cerebral damage, restores impaired mitochondrial biogenesis and prevents ROS production. J Neurochem 116(6):1148–1159CrossRefPubMedGoogle Scholar
  75. 75.
    Johri A, Calingasan NY, Hennessey TM, Sharma A, Yang L, Wille E, Chandra A, Beal MF (2012) Pharmacologic activation of mitochondrial biogenesis exerts widespread beneficial effects in a transgenic mouse model of Huntington’s disease. Hum Mol Genet 21(5):1124–1137CrossRefPubMedGoogle Scholar
  76. 76.
    Taherzadehfard E, Saft C, Akkad DA, Wieczorek S, Haghikia A, Chan A, Epplen JT, Arning L (2011) PGC-1alpha downstream transcription factors NRF-1 and TFAM are genetic modifiers of Huntington disease. Mol Neurodegener 6(1):32CrossRefGoogle Scholar
  77. 77.
    Piantadosi CA, Suliman HB (2006) Mitochondrial transcription factor A induction by redox activation of nuclear respiratory factor 1. J Biol Chem 281(1):324–333CrossRefPubMedGoogle Scholar
  78. 78.
    Kelly DP, Scarpulla RC (2004) Transcriptional regulatory circuits controlling mitochondrial biogenesis and function. Genes Dev 18(4):357–368CrossRefPubMedGoogle Scholar
  79. 79.
    Nakano M, Imamura H, Sasaoka N, Yamamoto M, Uemura N, Shudo T, Fuchigami T, Takahashi R, Kakizuka A (2017) ATP maintenance via two types of ATP regulators mitigates pathological phenotypes in mouse models of Parkinson’s disease. EBioMedicine 22(C):225–241CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Szalardy L, Molnar M, Torok R, Zadori D, Kovacs GG, Vecsei L, Klivenyi P (2016) Lack of age-related clinical progression in PGC-1α-deficient mice—implications for mitochondrial encephalopathies. Behav Brain Res 313:272–281.  https://doi.org/10.1016/j.bbr.2016.07.021 CrossRefPubMedGoogle Scholar
  81. 81.
    Zheng B, Liao Z, Locascio JJ, Lesniak KA, Roderick SS, Watt ML, Eklund AC, Zhang-James Y, Kim PD, Hauser MA, Grünblatt E, Moran LB, Mandel SA, Riederer P, Miller RM, Federoff HJ, Wüllner U, Papapetropoulos S, Youdim MB, Cantuti-Castelvetri I, Young AB, Vance JM, Davis RL, Hedreen JC, Adler CH, Beach TG, Graeber MB, Middleton FA, Rochet JC, Scherzer CR (2010) PGC-1α, a potential therapeutic target for early intervention in Parkinson’s disease. Sci Transl Med 2(52):52ra73CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Xi Y, Feng D, Tao K, Wang R, Shi Y, Qin H, Murphy MP, Yang Q, Zhao G (2018) MitoQ protects dopaminergic neurons in a 6-OHDA induced PD model by enhancing Mfn2-dependent mitochondrial fusion via activation of PGC-1α. Biochim Biophys Acta Mol Basis Dis 1864(9, Part B):2859–2870.  https://doi.org/10.1016/j.bbadis.2018.05.018 CrossRefPubMedGoogle Scholar
  83. 83.
    MacDonald ME, Ambrose CM, Duyao MP, Myers RH, Lin C, Srinidhi L, Barnes G, Taylor SA, James M, Groot N, MacFarlane H, Jenkins B, Anderson MA, Wexler NS, Gusella JF, Bates GP, Baxendale S, Hummerich H, Kirby S, North M, Youngman S, Mott R, Zehetner G, Sedlacek Z, Poustka A, Frischauf A-M, Lehrach H, Buckler AJ, Church D, Doucette-Stamm L, O’Donovan MC, Riba-Ramirez L, Shah M, Stanton VP, Strobel SA, Draths KM, Wales JL, Dervan P, Housman DE, Altherr M, Shiang R, Thompson L, Fielder T, Wasmuth JJ, Tagle D, Valdes J, Elmer L, Allard M, Castilla L, Swaroop M, Blanchard K, Collins FS, Snell R, Holloway T, Gillespie K, Datson N, Shaw D, Harper PS (1993) A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell 72(6):971–983.  https://doi.org/10.1016/0092-8674(93)90585-E CrossRefGoogle Scholar
  84. 84.
    Browne SE, Bowling AC, Macgarvey U, Baik MJ, Berger SC, Muquit MMK, Bird ED, Beal MF (1997) Oxidative damage and metabolic dysfunction in Huntington’s disease: selective vulnerability of the basal ganglia. Ann Neurol 41(5):646–653CrossRefPubMedGoogle Scholar
  85. 85.
    Fukui H, Moraes CT (2007) Extended polyglutamine repeats trigger a feedback loop involving the mitochondrial complex III, the proteasome and huntingtin aggregates. Hum Mol Genet 16(7):783CrossRefPubMedGoogle Scholar
  86. 86.
    Tabrizi SJ, Cleeter MW, Xuereb J, Taanman JW, Cooper JM, Schapira AH (1999) Biochemical abnormalities and excitotoxicity in Huntington’s disease brain. Ann Neurol 45(1):25–32CrossRefPubMedGoogle Scholar
  87. 87.
    Browne SE, Beal MF (2004) The energetics of Huntington’s disease. Neurochem Res 29(3):531–546CrossRefPubMedGoogle Scholar
  88. 88.
    Papa L, Germain D (2014) SirT3 regulates the mitochondrial unfolded protein response. Mol Cell Biol 34(4):699CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Kim J, Moody JP, Edgerly CK, Bordiuk OL, Cormier K, Smith K, Beal MF, Ferrante RJ (2010) Mitochondrial loss, dysfunction and altered dynamics in Huntington’s disease. Hum Mol Genet 19(20):3919CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Costa V, Giacomello M, Hudec R, Lopreiato R, Ermak G, Lim D, Malorni W, Davies KJA, Carafoli E, Scorrano L (2010) Mitochondrial fission and cristae disruption increase the response of cell models of Huntington’s disease to apoptotic stimuli. EMBO Mol Med 2(12):490–503CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Shirendeb U, Reddy AP, Manczak M, Calkins MJ, Mao P, Tagle DA, Reddy PH (2011) Abnormal mitochondrial dynamics, mitochondrial loss and mutant huntingtin oligomers in Huntington’s disease: implications for selective neuronal damage. Hum Mol Genet 20(7):1438–1455CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Westermann B (2012) Bioenergetic role of mitochondrial fusion and fission. Biochim Biophys Acta 1817(10):1833–1838CrossRefPubMedGoogle Scholar
  93. 93.
    Johri A, Chandra A, Flint Beal M (2013) PGC-1α, mitochondrial dysfunction, and Huntington’s disease. Free Radic Biol Med 62:37–46.  https://doi.org/10.1016/j.freeradbiomed.2013.04.016 CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Wong YC, Holzbaur ELF (2014) The regulation of autophagosome dynamics by huntingtin and HAP1 is disrupted by expression of mutant huntingtin, leading to defective cargo degradation. J Neurosci Off J Soc Neurosci 34(4):1293CrossRefGoogle Scholar
  95. 95.
    Martinezvicente M, Talloczy Z, Wong E, Tang G, Koga H, Kaushik S, De Vries R, Arias E, Harris S, Sulzer D (2010) Cargo recognition failure is responsible for inefficient autophagy in Huntington’s disease. Nat Neurosci 13(5):567CrossRefGoogle Scholar
  96. 96.
    Pinti M, Gibellini L, De Biasi S, Nasi M, Roat E, O’Connor JE, Cossarizza A (2011) Functional characterization of the promoter of the human Lon protease gene. Mitochondrion 11(1):200–206CrossRefPubMedGoogle Scholar
  97. 97.
    Zhang X, Ren X, Zhang Q, Li Z, Ma S, Bao J, Li Z, Bai X, Zheng L, Zhang Z, Shang S, Zhang C, Wang C, Cao L, Wang Q, Ji J (2016) PGC-1α/ERRα-Sirt3 pathway regulates DAergic neuronal death by directly deacetylating SOD2 and ATP synthase β. Antioxid Redox Signal 24(6):312–328CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Dabrowska A, Venero JL, Iwasawa R, Hankir MK, Rahman S, Boobis A, Hajji N (2015) PGC-1α controls mitochondrial biogenesis and dynamics in lead-induced neurotoxicity. Aging 7(9):629–643CrossRefPubMedPubMedCentralGoogle Scholar
  99. 99.
    Chung Y-C, Lin TK, Yang DI, Yang JL, Liou C-W, Chen SD (2016) Peroxisome proliferator-activated receptor-gamma dependent pathway reduces the phosphorylation of dynamin-related protein 1 and ameliorates hippocampal injury induced by global ischemia in rats. J Biomed Sci 23(1):44CrossRefGoogle Scholar
  100. 100.
    Martin O, Lai L, Soundarapandian M, Leone T, Zorzano A, Keller M, Attie A, Muoio D, Kelly D (2014) A role for peroxisome proliferator-activated receptor γ coactivator-1 in the control of mitochondrial dynamics during postnatal cardiac growth. Circ Res 114(4):626–636CrossRefPubMedGoogle Scholar
  101. 101.
    Tsunemi T, Ashe TD, Morrison BE, Soriano KR, Au J, Roque RA, Lazarowski ER, Damian VA, Masliah E, La Spada AR (2012) PGC-1α rescues Huntington’s disease proteotoxicity by preventing oxidative stress and promoting TFEB function. Sci Transl Med 4(142):142ra97CrossRefPubMedPubMedCentralGoogle Scholar
  102. 102.
    Emamian S, Naghdi N, Sepehri H, Jahanshahi M, Sadeghi Y, Choopani S (2010) Learning impairment caused by intra-CA1 microinjection of testosterone increases the number of astrocytes. Behav Brain Res 208(1):30–37CrossRefPubMedGoogle Scholar
  103. 103.
    Chu YF, Chang WH, Black RM, Liu JR, Sompol P, Chen Y, Wei H, Zhao Q, Cheng IH (2012) Crude caffeine reduces memory impairment and amyloid β(1–42) levels in an Alzheimer’s mouse model. Food Chem 135(3):2095CrossRefPubMedGoogle Scholar
  104. 104.
    Amemori T, Jendelova P, Ruzicka J, Urdzikova LM, Sykova E (2015) Alzheimer’s disease: mechanism and approach to cell therapy. Int J Mol Sci 16(11):26417–26451CrossRefPubMedPubMedCentralGoogle Scholar
  105. 105.
    Rhein V, Song X, Wiesner A, Ittner LM, Baysang G, Meier F, Ozmen L, Bluethmann H, Dröse S, Brandt U, Savaskan E, Czech C, Götz J, Eckert A (2009) Amyloid-beta and tau synergistically impair the oxidative phosphorylation system in triple transgenic Alzheimer’s disease mice. Proc Natl Acad Sci USA 106(47):20057–20062CrossRefPubMedGoogle Scholar
  106. 106.
    Lim YA, Rhein V, Baysang G, Meier F, Poljak A, Raftery MJ, Guilhaus M, Ittner LM, Eckert A, Götz J (2010) Abeta and human amylin share a common toxicity pathway via mitochondrial dysfunction. Proteomics Clin Appl 4(8–9):768–768CrossRefGoogle Scholar
  107. 107.
    Hamon M-P, Bulteau A-L, Friguet B (2015) Mitochondrial proteases and protein quality control in ageing and longevity. Ageing Res Rev 23:56–66.  https://doi.org/10.1016/j.arr.2014.12.010 CrossRefPubMedGoogle Scholar
  108. 108.
    Calkins MJ (1812) Reddy PH (2011) Assessment of newly synthesized mitochondrial DNA using BrdU labeling in primary neurons from Alzheimer’s disease mice: implications for impaired mitochondrial biogenesis and synaptic damage. BBA Mol Basis Dis 9:1182–1189Google Scholar
  109. 109.
    Chen H, Detmer SA, Ewald AJ, Griffin EE, Fraser SE, Chan DC (2003) Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development. J Cell Biol 160(2):189–200CrossRefPubMedPubMedCentralGoogle Scholar
  110. 110.
    Wang X, Su B, Lee HG, Li X, Perry G, Smith MA, Zhu X (2009) Impaired balance of mitochondrial fission and fusion in Alzheimer’s disease. J Neurosci Off J Soc Neurosci 29(28):9090–9103CrossRefGoogle Scholar
  111. 111.
    Wang X, Su B, Fujioka H, Zhu X (2008) Dynamin-like protein 1 reduction underlies mitochondrial morphology and distribution abnormalities in fibroblasts from sporadic Alzheimer’s disease patients. Am J Pathol 173(2):470–482CrossRefPubMedPubMedCentralGoogle Scholar
  112. 112.
    Wang X, Su B, Siedlak SL, Moreira PI, Fujioka H, Wang Y, Casadesus G, Zhu X (2008) Amyloid-β overproduction causes abnormal mitochondrial dynamics via differential modulation of mitochondrial fission/fusion proteins. Proc Natl Acad Sci USA 105(49):19318–19323CrossRefPubMedGoogle Scholar
  113. 113.
    Peng K, Yang L, Wang J, Ye F, Dan G, Zhao Y, Cai Y, Cui Z, Ao L, Liu J (2017) The interaction of mitochondrial biogenesis and fission/fusion mediated by PGC-1α regulates rotenone-induced dopaminergic neurotoxicity. Mol Neurobiol 54(5):3783–3797CrossRefPubMedGoogle Scholar
  114. 114.
    Qin W, Haroutunian V, Katsel P, Cardozo CP, Ho L, Buxbaum JD, Pasinetti GM (2009) PGC-1alpha expression decreases in the Alzheimer disease brain as a function of dementia. Arch Neurol 66(3):352CrossRefPubMedPubMedCentralGoogle Scholar
  115. 115.
    Vallée A, Lecarpentier Y (2016) Alzheimer disease: crosstalk between the canonical Wnt/beta-catenin pathway and PPARs alpha and gamma. Front Neurosci 10:459CrossRefPubMedPubMedCentralGoogle Scholar
  116. 116.
    Katsouri L, Parr C, Bogdanovic N, Willem M, Sastre M (2011) PPAR gamma co-activator-1 alpha (PGC-1 alpha) reduces amyloid-beta generation through a PPAR gamma-dependent mechanism. J Alzheimers Dis 25(1):151–162CrossRefPubMedGoogle Scholar
  117. 117.
    Chen H, Mccaffery JM, Chan DC (2007) Mitochondrial fusion protects against neurodegeneration in the cerebellum. Cell 130(3):548–562CrossRefPubMedGoogle Scholar
  118. 118.
    Fulga TA, Elson-Schwab I, Khurana V, Steinhilb ML, Spires TL, Hyman BT, Feany MB (2007) Abnormal bundling and accumulation of F-actin mediates tau-induced neuronal degeneration in vivo. Nat Cell Biol 9(2):139–148CrossRefGoogle Scholar
  119. 119.
    Jo C, Gundemir S, Pritchard S, Jin YN, Rahman I, Johnson GVW (2014) Nrf2 reduces levels of phosphorylated tau protein by inducing autophagy adaptor protein NDP52. Nat Commun 5(42):3496CrossRefPubMedPubMedCentralGoogle Scholar
  120. 120.
    Wang X, Wang Z, Liu JZ, Hu JX, Chen HL, Li WL, Hai CX (2011) Double antioxidant activities of rosiglitazone against high glucose-induced oxidative stress in hepatocyte. Toxicol In Vitro 25(4):839CrossRefPubMedGoogle Scholar
  121. 121.
    Nixon RA, Yang DS (2011) Autophagy failure in Alzheimer’s disease—locating the primary defect. Neurobiol Dis 43(1):38–45CrossRefPubMedPubMedCentralGoogle Scholar
  122. 122.
    Lee JH, Yu WH, Kumar A, Lee S, Mohan PS, Peterhoff CM, Wolfe DM, Martinez-Vicente M, Massey AC, Sovak G (2010) Lysosomal proteolysis and autophagy require presenilin 1 and are disrupted by Alzheimer-related PS1 mutations. Cell 141(7):1146–1158CrossRefPubMedPubMedCentralGoogle Scholar
  123. 123.
    Deng Z, Purtell K, Lachance V, Wold MS, Chen S, Yue Z (2017) Autophagy receptors and neurodegenerative diseases. Trends Cell Biol 27(7):491–504.  https://doi.org/10.1016/j.tcb.2017.01.001 CrossRefPubMedGoogle Scholar
  124. 124.
    Dai SH, Chen T, Li X, Yue KY, Luo P, Yang LK, Zhu J, Wang YH, Fei Z, Jiang XF (2017) Sirt3 confers protection against neuronal ischemia by inducing autophagy: involvement of the AMPK-mTOR pathway. Free Radic Biol Med 108:345CrossRefPubMedGoogle Scholar
  125. 125.
    Wang C, Hu Z, Zou Y, Xiang M, Jiang Y, Botchway BOA, Huo X, Du X, Fang M (2017) The post-therapeutic effect of rapamycin in mild traumatic brain-injured rats ensuing in the upregulation of autophagy and mitophagy. Cell Biol Int 41(9):1039–1047CrossRefPubMedGoogle Scholar
  126. 126.
    Dexter DT, Jenner P (2013) Parkinson disease: from pathology to molecular disease mechanisms. Free Radic Biol Med 62(5):132–144CrossRefPubMedGoogle Scholar
  127. 127.
    Kalia LV, Lang AE (2015) Parkinson’s disease. Lancet 386(9996):896–912CrossRefGoogle Scholar
  128. 128.
    Hu Q, Wang G (2016) Mitochondrial dysfunction in Parkinson’s disease. Transl Neurodegener 5(1):14CrossRefPubMedPubMedCentralGoogle Scholar
  129. 129.
    Corti O, Brice A (2013) Mitochondrial quality control turns out to be the principal suspect in parkin and PINK1-related autosomal recessive Parkinson’s disease. Curr Opin Neurobiol 23(1):100–108CrossRefPubMedGoogle Scholar
  130. 130.
    Bulteau A-L, Mena NP, Auchère F, Lee I, Prigent A, Lobsiger CS, Camadro J-M, Hirsch EC (2017) Dysfunction of mitochondrial Lon protease and identification of oxidized protein in mouse brain following exposure to mPTP: implications for Parkinson disease. Free Radic Biol Med 108:236–246.  https://doi.org/10.1016/j.freeradbiomed.2017.03.036 CrossRefPubMedGoogle Scholar
  131. 131.
    Bota DA, Davies KJA (2002) Lon protease preferentially degrades oxidized mitochondrial aconitase by an ATP-stimulated mechanism. Nat Cell Biol 4(9):674–680CrossRefPubMedGoogle Scholar
  132. 132.
    Bender T, Leidhold C, Ruppert T, Franken S, Voos W (2010) The role of protein quality control in mitochondrial protein homeostasis under oxidative stress. Proteomics 10(7):1426–1443CrossRefPubMedGoogle Scholar
  133. 133.
    Winslow AR, Chen CW, Corrochano S, Acevedo-Arozena A, Gordon DE, Peden AA, Lichtenberg M, Menzies FM, Ravikumar B, Imarisio S (2010) α-Synuclein impairs macroautophagy: implications for Parkinson’s disease. J Cell Biol 190(6):1023–1037CrossRefPubMedPubMedCentralGoogle Scholar
  134. 134.
    Eschbach J, Von Einem B, Müller K, Bayer H, Scheffold A, Morrison BE, Rudolph KL, Thal DR, Witting A, Weydt P (2015) Mutual exacerbation of peroxisome proliferator-activated receptor γ coactivator 1α deregulation and α-synuclein oligomerization. Ann Neurol 77(1):15–32CrossRefPubMedGoogle Scholar
  135. 135.
    Choi J, Batchu VVK, Schubert M, Castellani RJ, Russell JW (2012) Activation of mitochondrial bioenergetics by 35-kDa PGC-1α/PINK1 signaling pathway. Mitochondrion 12(5):570–571.  https://doi.org/10.1016/j.mito.2012.07.053 CrossRefGoogle Scholar
  136. 136.
    Choi J, Ravipati A, Nimmagadda V, Schubert M, Castellani RJ, Russell JW (2014) Potential roles of PINK1 for increased PGC-1α-mediated mitochondrial fatty acid oxidation and their associations with Alzheimer disease and diabetes. Mitochondrion 18:41–48.  https://doi.org/10.1016/j.mito.2014.09.005 CrossRefPubMedPubMedCentralGoogle Scholar
  137. 137.
    Ziviani E, Whitworth AJ (2010) How could Parkin-mediated ubiquitination of mitofusin promote mitophagy? Autophagy 6(5):660–662CrossRefPubMedPubMedCentralGoogle Scholar
  138. 138.
    Siddiqui A, Bhaumik D, Chinta SJ, Rane A, Rajagopalan S, Lieu CA, Lithgow GJ, Andersen JK (2015) Mitochondrial quality control via the PGC1α-TFEB signaling pathway is compromised by Parkin Q311X mutation but independently restored by rapamycin. J Neurosci Off J Soc Neurosci 35(37):12833–12844CrossRefGoogle Scholar
  139. 139.
    Cherubini M, Ginés S (2017) Mitochondrial fragmentation in neuronal degeneration: toward an understanding of HD striatal susceptibility. Biochem Biophys Res Commun 483(4):1063–1068.  https://doi.org/10.1016/j.bbrc.2016.08.042 CrossRefPubMedGoogle Scholar
  140. 140.
    Du H, Guo L, Fang F, Chen D, Sosunov AA, Mckhann GM, Yan Y, Wang C, Zhang H, Molkentin JD (2008) Cyclophilin D deficiency attenuates mitochondrial and neuronal perturbation and ameliorates learning and memory in Alzheimer’s disease. Nat Med 14(10):1097–1105CrossRefPubMedPubMedCentralGoogle Scholar
  141. 141.
    Greene N, Lee D, Brown J, Rosa M, Brown L, Perry R, Henry J, Washington T (2015) Mitochondrial quality control, promoted by PGC-1α, is dysregulated by Western diet-induced obesity and partially restored by moderate physical activity in mice. Physiol Rep.  https://doi.org/10.14814/phy2.12470 CrossRefPubMedPubMedCentralGoogle Scholar
  142. 142.
    Hafner AV, Dai J, Gomes AP, Xiao CY, Palmeira CM, Rosenzweig A, Sinclair DA (2010) Regulation of the mPTP by SIRT3-mediated deacetylation of CypD at lysine 166 suppresses age-related cardiac hypertrophy. Aging 2(12):914–923CrossRefPubMedPubMedCentralGoogle Scholar
  143. 143.
    Zhang ZX, Li YB, Zhao RP (2016) Epigallocatechin gallate attenuates β-amyloid generation and oxidative stress involvement of PPARγ in N2a/APP695 cells. Neurochem Res 42:1–13Google Scholar
  144. 144.
    Chandra A, Sharma A, Calingasan NY, White JM, Shurubor Y, Yang XW, Beal MF, Johri A (2016) Enhanced mitochondrial biogenesis ameliorates disease phenotype in a full-length mouse model of Huntington’s disease. Hum Mol Genet 25(11):2269–2282CrossRefPubMedPubMedCentralGoogle Scholar
  145. 145.
    Li F, Wang X, Deng Z, Zhang X, Gao P, Liu H (2018) Dexmedetomidine reduces oxidative stress and provides neuroprotection in a model of traumatic brain injury via the PGC-1α signaling pathway. Neuropeptides 72:58–64.  https://doi.org/10.1016/j.npep.2018.10.004 CrossRefPubMedGoogle Scholar
  146. 146.
    Torok R, Salamon A, Sumegi E, Zadori D, Veres G, Molnar MF, Vecsei L, Klivenyi P (2017) Effect of mPTP on mRNA expression of PGC-1α in mouse brain. Brain Res 1660:20–26.  https://doi.org/10.1016/j.brainres.2017.01.032 CrossRefPubMedGoogle Scholar
  147. 147.
    Ciron C, Lengacher S, Dusonchet J, Aebischer P, Schneider BL (2012) Sustained expression of PGC-1α in the rat nigrostriatal system selectively impairs dopaminergic function. Hum Mol Genet 21(8):1861–1876CrossRefPubMedPubMedCentralGoogle Scholar
  148. 148.
    Ruas JL, White JP, Rao RR, Kleiner S, Brannan KT, Harrison BC, Greene NP, Wu J, Estall JL, Irving BA, Lanza IR, Rasbach KA, Okutsu M, Nair KS, Yan Z, Leinwand LA, Spiegelman BM (2012) A PGC-1α isoform induced by resistance training regulates skeletal muscle hypertrophy. Cell 151(6):1319–1331.  https://doi.org/10.1016/j.cell.2012.10.050 CrossRefPubMedPubMedCentralGoogle Scholar
  149. 149.
    Martínez-Redondo V, Jannig PR, Correia JC, Ferreira DM, Cervenka I, Lindvall JM, Sinha I, Izadi M, Pettersson-Klein AT, Agudelo LZ, Gimenez-Cassina A, Brum PC, Dahlman-Wright K, Ruas JL (2016) Peroxisome proliferator-activated receptor γ coactivator-1 α isoforms selectively regulate multiple splicing events on target genes. J Biol Chem 291(29):15169–15184CrossRefPubMedPubMedCentralGoogle Scholar
  150. 150.
    Oropeza D, Jouvet N, Bouyakdan K, Perron G, Ringuette L-J, Philipson LH, Kiss RS, Poitout V, Alquier T, Estall JL (2015) PGC-1 coactivators in β-cells regulate lipid metabolism and are essential for insulin secretion coupled to fatty acids. Mol Metab 4(11):811–822.  https://doi.org/10.1016/j.molmet.2015.08.001 CrossRefPubMedPubMedCentralGoogle Scholar
  151. 151.
    Tian L, Cao W, Yue R, Yuan Y, Guo X, Qin D, Xing J, Wang X (2019) Pretreatment with Tilianin improves mitochondrial energy metabolism and oxidative stress in rats with myocardial ischemia/reperfusion injury via AMPK/SIRT1/PGC-1 alpha signaling pathway. J Pharmacol Sci.  https://doi.org/10.1016/j.jphs.2019.02.008 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Intensive Care UnitThe First Hospital of Jilin UniversityChangchunChina
  2. 2.Department of NeurosurgeryThe First Hospital of Jilin UniversityChangchunChina

Personalised recommendations