Neurochemical Research

, Volume 44, Issue 9, pp 2113–2122 | Cite as

The Effect of SPTLC2 on Promoting Neuronal Apoptosis is Alleviated by MiR-124-3p Through TLR4 Signalling Pathway

  • Xinhong Su
  • Yuqin Ye
  • Yongxiang Yang
  • Kailiang Zhang
  • Wei Bai
  • Huijun Chen
  • Enming Kang
  • Chuiguang Kong
  • Xiaosheng HeEmail author
Original Paper


To investigate the role and mechanism of microRNA-124-3p (miR-124-3p) and serine palmitoyltransferase long chain base subunit 2 (SPTLC2) in neuronal apoptosis induced by mechanical injury. Transient transfection was used to modify the expression of miR-124-3p and SPTLC2. After transfection, neuronal apoptosis was evaluated in an in vitro injury model of primary neurons using TUNEL staining and western blot. The correlation between miR-124-3p and SPTLC2 was identified through a dual luciferase reporter assay in HEK293 cells. A rescue experiment in primary neurons was performed to further confirm the result. To explore the downstream mechanisms, co-immunoprecipitation was performed to identify proteins that interact with SPTLC2 in toll-like receptor 4 (TLR4) signalling pathway. Subsequently, the relative expression levels of TLR4 pathway molecules were measured by western blot. Our results showed that increased miR-124-3p can inhibit neuronal apoptosis, which is opposite to the effect of SPTLC2. In addition, miR-124-3p was proved to negatively regulate SPTLC2 expression and suppress the apoptosis-promoting effect of SPTLC2 via the TLR4 signalling pathway.


miR-124-3p SPTLC2 Apoptosis TLR4 



This study was supported by the Natural Science Foundation of China (No. 81471264).

Compliance with Ethical Standards

Conflict of interest

The authors have no conflicts of interest to disclose.


  1. 1.
    Lazaridis C, Rusin CG, Robertson CS (2019) Secondary brain injury: predicting and preventing insults. Neuropharmacology 145(Pt B):145–152CrossRefGoogle Scholar
  2. 2.
    Stoica BA, Faden AI (2010) Cell death mechanisms and modulation in traumatic brain injury. Neurotherapeutics 7(1):3–12CrossRefGoogle Scholar
  3. 3.
    Cheng LC, Pastrana E, Tavazoie M, Doetsch F (2009) MiR-124 regulates adult neurogenesis in the subventricular zone stem cell niche. Nat Neurosci 12(4):399–408CrossRefGoogle Scholar
  4. 4.
    Huang S, Ge X, Yu J, Han Z, Yin Z, Li Y, Chen F, Wang H, Zhang J, Lei P (2018) Increased miR-124-3p in microglial exosomes following traumatic brain injury inhibits neuronal inflammation and contributes to neurite outgrowth via their transfer into neurons. Faseb J 32(1):512–528CrossRefGoogle Scholar
  5. 5.
    Yuan Q, Sun T, Ye F, Kong W, Jin H (2017) MicroRNA-124-3p affects proliferation, migration and apoptosis of bladder cancer cells through targeting AURKA. Cancer Biomark 19(1):93–101CrossRefGoogle Scholar
  6. 6.
    Pan Y, Jing J, Qiao L, Liu J, An L, Li B, Ren D, Liu W (2018) MiRNA-seq reveals that miR-124-3p inhibits adipogenic differentiation of the stromal vascular fraction in sheep via targeting C/EBPα. Domest Anim Endocrinol 65:17–23CrossRefGoogle Scholar
  7. 7.
    Wang JR, Liu B, Zhou L, Huang YX (2019) MicroRNA-124-3p suppresses cell migration and invasion by targeting ITGA3 signaling in bladder cancer. Cancer Biomark 24(2):159–172CrossRefGoogle Scholar
  8. 8.
    Deng D, Wang L, Chen Y, Li B, Xue L, Shao N, Wang Q, Xia X, Yang Y, Zhi F (2016) MicroRNA-124-3p regulates cell proliferation, invasion, apoptosis, and bioenergetics by targeting PIM1 in astrocytoma. Cancer Sci 107(7):899–907CrossRefGoogle Scholar
  9. 9.
    Geng L, Liu W, Chen Y (2017) MiR-124-3p attenuates MPP(+)-induced neuronal injury by targeting STAT3 in SH-SY5Y cells. Exp Biol Med (Maywood) 242(18):1757–1764CrossRefGoogle Scholar
  10. 10.
    Dong RF, Zhang B, Tai LW, Liu HM, Shi FK, Liu NN (2018) The neuroprotective role of miR-124-3p in a 6-hydroxydopamine-induced cell model of Parkinson's Disease via the regulation of ANAX5. J Cell Biochem 119(1):269–277CrossRefGoogle Scholar
  11. 11.
    Zhou Y, Deng J, Chu X, Zhao Y, Guo Y (2019) Role of post-transcriptional control of calpain by miR-124-3p in the development of Alzheimer's Disease. J Alzheimers Dis 67(2):571–581CrossRefGoogle Scholar
  12. 12.
    Pettus BJ, Chalfant CE, Hannun YA (2002) Ceramide in apoptosis: an overview and current perspectives. Biochim Biophys Acta 1585(2–3):114–125CrossRefGoogle Scholar
  13. 13.
    Hornemann T, Penno A, Rutti MF, Ernst D, Kivrak-Pfiffner F, Rohrer L, Von Eckardstein A (2009) The SPTLC3 subunit of serine palmitoyltransferase generates short chain sphingoid bases. J Biol Chem 284(39):26322–26330CrossRefGoogle Scholar
  14. 14.
    Rotthier A, Auer-Grumbach M, Janssens K, Baets J, Penno A, Almeida-Souza L, Van Hoof K, Jacobs A, De Vriendt E, Schlotter-Weigel B, Loscher W, Vondracek P, Seeman P, De Jonghe P, Van Dijck P, Jordanova A, Hornemann T, Timmerman V (2010) Mutations in the SPTLC2 subunit of serine palmitoyltransferase cause hereditary sensory and autonomic neuropathy type I. Am J Hum Genet 87(4):513–522CrossRefGoogle Scholar
  15. 15.
    Dickson RC, Lester RL, Nagiec MM (2000) Serine palmitoyltransferase. Methods Enzymol 311:3–9CrossRefGoogle Scholar
  16. 16.
    Hornemann T, Richard S, Rutti MF, Wei Y, Von Eckardstein A (2006) Cloning and initial characterization of a new subunit for mammalian serine-palmitoyltransferase. J Biol Chem 281(49):37275–37281CrossRefGoogle Scholar
  17. 17.
    Maeng HJ, Song JH, Kim GT, Song YJ, Lee K, Kim JY, Park TS (2017) Celecoxib-mediated activation of endoplasmic reticulum stress induces de novo ceramide biosynthesis and apoptosis in hepatoma HepG2 cells mobilization. BMB Rep 50(3):144–149CrossRefGoogle Scholar
  18. 18.
    Hanada K (2003) Serine palmitoyltransferase, a key enzyme of sphingolipid metabolism. Biochim Biophys Acta 1632(1–3):16–30CrossRefGoogle Scholar
  19. 19.
    Papagiannakopoulos T, Kosik KS (2009) MicroRNA-124: micromanager of neurogenesis. Cell Stem Cell 4(5):375–376CrossRefGoogle Scholar
  20. 20.
    Periyasamy P, Liao K, Kook YH, Niu F, Callen SE, Guo ML, Buch S (2018) Cocaine-mediated downregulation of miR-124 activates microglia by targeting KLF4 and TLR4 signaling. Mol Neurobiol 55(4):3196–3210CrossRefGoogle Scholar
  21. 21.
    Hu L, Yang H, Ai M, Jiang S (2017) Inhibition of TLR4 alleviates the inflammation and apoptosis of retinal ganglion cells in high glucose. Graefes Arch Clin Exp Ophthalmol 255(11):2199–2210CrossRefGoogle Scholar
  22. 22.
    Chang ZQ, Lee SY, Kim HJ, Kim JR, Kim SJ, Hong IK, Oh BC, Choi CS, Goldberg IJ, Park TS (2011) Endotoxin activates de novo sphingolipid biosynthesis via nuclear factor kappa B-mediated upregulation of SPTLC2. Prostaglandins Other Lipid Mediat 94(1–2):44–52CrossRefGoogle Scholar
  23. 23.
    Brewer GJ, Torricelli JR, Evege EK, Price PJ (1993) Optimized survival of hippocampal neurons in B27-supplemented neurobasal, a new serum-free medium combination. J Neurosci Res 35(5):567–576CrossRefGoogle Scholar
  24. 24.
    Bastianetto S, Ramassamy C, Poirier J, Quirion R (1999) Dehydroepiandrosterone (DHEA) protects hippocampal cells from oxidative stress-induced damage. Brain Res Mol Brain Res 66(1–2):35–41CrossRefGoogle Scholar
  25. 25.
    Greer JE, Hanell A, Mcginn MJ, Povlishock JT (2013) Mild traumatic brain injury in the mouse induces axotomy primarily within the axon initial segment. Acta Neuropathol 126(1):59–74CrossRefGoogle Scholar
  26. 26.
    Ma Y, Liu W, Wang Y, Chao X, Qu Y, Wang K, Fei Z (2011) VEGF protects rat cortical neurons from mechanical trauma injury induced apoptosis via the MEK/ERK pathway. Brain Res Bull 86(5–6):441–446CrossRefGoogle Scholar
  27. 27.
    Zhao Y, Luo P, Guo Q, Li S, Zhang L, Zhao M, Xu H, Yang Y, Poon W, Fei Z (2012) Interactions between SIRT1 and MAPK/ERK regulate neuronal apoptosis induced by traumatic brain injury in vitro and in vivo. Exp Neurol 237(2):489–498CrossRefGoogle Scholar
  28. 28.
    Raghupathi R, Graham DI, Mcintosh TK (2000) Apoptosis after traumatic brain injury. J Neurotrauma 17(10):927–938CrossRefGoogle Scholar
  29. 29.
    Clausen F, Marklund N, Hillered L (2019) Acute inflammatory biomarker responses to diffuse traumatic brain injury in the rat monitored by a novel microdialysis technique. J Neurotrauma 36(2):201–211CrossRefGoogle Scholar
  30. 30.
    Kang Q, Xiang Y, Li D, Liang J, Zhang X, Zhou F, Qiao M, Nie Y, He Y, Cheng J, Dai Y, Li Y (2017) MiR-124-3p attenuates hyperphosphorylation of Tau protein-induced apoptosis via caveolin-1-PI3K/Akt/GSK3beta pathway in N2a/APP695swe cells. Oncotarget 8(15):24314–24326CrossRefGoogle Scholar
  31. 31.
    Jain A, Beutel O, Ebell K, Korneev S, Holthuis JC (2017) Diverting CERT-mediated ceramide transport to mitochondria triggers Bax-dependent apoptosis. J Cell Sci 130(2):360–371CrossRefGoogle Scholar
  32. 32.
    Jazvinšćak Jembrek M, Hof PR, Šimić G (2015) Ceramides in Alzheimer's Disease: key mediators of neuronal apoptosis induced by oxidative stress and abeta accumulation. Oxid Med Cell Longev 2015:346783Google Scholar
  33. 33.
    Lang F, Ullrich S, Gulbins E (2011) Ceramide formation as a target in beta-cell survival and function. Expert Opin Ther Targets 15(9):1061–1071CrossRefGoogle Scholar
  34. 34.
    Li W, Liu HD, You WC, Zhou ML, Ling HP, Shen W, Zhu L, Hang CH (2013) Enhanced cortical expression of myeloid differentiation primary response protein 88 (MYD88) in patients with traumatic brain injury. J Surg Res 180(1):133–139CrossRefGoogle Scholar
  35. 35.
    Zhou L, Liu Z, Wang Z, Yu S, Long T, Zhou X, Bao Y (2017) Astragalus polysaccharides exerts immunomodulatory effects via TLR4-mediated MYD88-dependent signaling pathway in vitro and in vivo. Sci Rep 7:44822CrossRefGoogle Scholar
  36. 36.
    Yu N, Hu S, Hao Z (2018) Benificial effect of stachydrine on the traumatic brain injury induced neurodegeneration by attenuating the expressions of Akt/mTOR/PI3K and TLR4/NFkappa-B pathway. Transl Neurosci 9:175–182CrossRefGoogle Scholar
  37. 37.
    Li C, Che LH, Ji TF, Shi L, Yu JL (2017) Effects of the TLR4 signaling pathway on apoptosis of neuronal cells in diabetes mellitus complicated with cerebral infarction in a rat model. Sci Rep 7:43834CrossRefGoogle Scholar
  38. 38.
    Feng Y, Cui C, Liu X, Wu Q, Hu F, Zhang H, Ma Z, Wang L (2017) Protective role of apocynin via suppression of neuronal autophagy and TLR4/NF-kappaB signaling pathway in a rat model of traumatic brain injury. Neurochem Res 42(11):3296–3309CrossRefGoogle Scholar
  39. 39.
    Veremeyko T, Siddiqui S, Sotnikov I, Yung A, Ponomarev ED (2013) IL-4/IL-13-dependent and independent expression of miR-124 and its contribution to M2 phenotype of monocytic cells in normal conditions and during allergic inflammation. PLoS ONE 8(12):e81774CrossRefGoogle Scholar
  40. 40.
    Yang Y, Ye Y, Kong C, Su X, Zhang X, Bai W, He X (2019) MiR-124 enriched exosomes promoted the M2 polarization of microglia and enhanced hippocampus neurogenesis after traumatic brain injury by inhibiting TLR4 pathway. Neurochem Res 44(4):811–828CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Xinhong Su
    • 1
  • Yuqin Ye
    • 2
  • Yongxiang Yang
    • 1
  • Kailiang Zhang
    • 3
  • Wei Bai
    • 1
  • Huijun Chen
    • 1
  • Enming Kang
    • 1
  • Chuiguang Kong
    • 1
  • Xiaosheng He
    • 1
    Email author
  1. 1.Department of NeurosurgeryXijing Hospital, Air Force Military Medical UniversityXi’anChina
  2. 2.Department of NeurosurgeryPLA 921rd HospitalChangshaChina
  3. 3.Department of Orthopedic Surgery, Orthopedic Oncology Institute of Chinese PLATangdu Hospital, Air Force Military Medical UniversityXi’anChina

Personalised recommendations