Advertisement

Neurochemical Research

, Volume 44, Issue 9, pp 2068–2080 | Cite as

N-methyl-d-aspartate Receptors in the Prelimbic Cortex are Critical for the Maintenance of Neuropathic Pain

  • Priscila Medeiros
  • Sylmara Esther Negrini-Ferrari
  • Enza Palazzo
  • Sabatino Maione
  • Sérgio Henrique Ferreira
  • Renato Leonardo de FreitasEmail author
  • Norberto Cysne CoimbraEmail author
Original Paper

Abstract

The mechanisms underlying chronic and neuropathic pain pathology involve peripheral and central sensitisation. The medial prefrontal cortex (mPFC) seems to participate in pain chronification, and glutamatergic neurotransmission may be involved in this process. Thus, the aim of the present work was to investigate the participation of the prelimbic (PrL) area of the mPFC in neuropathic pain as well as the role of N-methyl d-aspartate (NMDA) glutamate receptors in neuropathic pain induced by a modified sciatic nerve chronic constriction injury (CCI) protocol in Wistar rats. Neural inputs to the PrL cortex were inactivated by intracortical treatment with the synapse blocker cobalt chloride (CoCl2, 1.0 mM/200 nL) 7, 14, 21, or 28 days after the CCI or sham procedure. The glutamatergic agonist NMDA (0.25, 1 or 4 nmol) or the selective NMDA receptor antagonist LY235959 (2, 4 or 8 nmol) was microinjected into the PrL cortex 21 days after surgery. CoCl2 administration in the PrL cortex decreased allodynia 21 and 28 days after CCI. NMDA at 1 and 4 nmol increased allodynia, whereas LY235959 decreased mechanical allodynia at the highest dose (8 nmol) microinjected into the PrL cortex. These findings suggest that NMDA receptors in the PrL cortex participate in enhancing the late phase of mechanical allodynia after NMDA-induced increases and LY235959-induced decreases in allodynia 21 days after CCI. The glutamatergic system potentiates chronic neuropathic pain by NMDA receptor activation in the PrL cortex.

Graphic Abstract

Mechanism of neuropathic pain. The infusion of CoCl2, a synapse activity blocker, into the prelimbic (PrL) division of the medial prefrontal cortex (mPFC) decreased the severity of mechanical allodynia, showing the late participation of the limbic cortex. The glutamatergic system potentiates chronic neuropathic pain via NMDA receptor activation in the PrL cortex.

Keywords

Sciatic nerve chronic constriction injury Neuropathic pain Prelimbic cortex Medial prefrontal cortex Cobalt chloride NMDA glutamatergic receptor 

Notes

Acknowledgements

This research was supported by Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) (Research Grant 2013/12916-0 and Multi-user Equipment Grant 2014/11869-0) and Conselho Nacional de Pesquisa e Desenvolvimento Tecnológico (CNPq) (Grants 483763/2010-1, 474853/2013-6, and 427397/2018-9). Neither of these funding sources had any role in the study design; in the collection, analysis, and interpretation of the data; in the writing of the report; or in the decision to submit the paper for publication. Renato Leonardo de Freitas was supported by FAPESP (Scientific Initiation Scholarship Grant 2001/03752-6, M.Sc. Fellowship Grant 2003/05256-1, Post-doctoral Fellowship Grant 2009/17258-5, and Researcher Fellowship Grant 2014/07902-2) and CAPES (Sc.D. Fellowship Grant 001). FAPESP also supported Priscila de Medeiros (Sc.D. Fellowship Grant 2012/25167-2; Post-doctoral Fellowship Grant 2017/13560-5). Norberto Cysne Coimbra is a researcher (level 1A) from CNPq (Processes 301905/2010-0 and 301341/2015-0). Sérgio Henrique Ferreira was supported by FAPESP (Thematic Project Processes 2011/19670-0 and 2013/08216-2; Centre for Research in Inflammatory Diseases—CRID), the University of São Paulo Pro-Rectory (Process NAP-DIN 11.1.21625.01.0), the European Union Seventh Framework Programme (FP7-2007-2013; HEALTH-F4-2011-281608), and the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, Brazil). Dr. Sabatino Maione was supported by Regione Campania (FarmaBioNet process FESR 2007-2013—00 2.1). The authors thank Daoud Hibrahim Elias-Filho, Ieda R. dos Santos, and Maria Rossatto for their expert technical assistance. D.H. Elias-Filho was the recipient of technician scholarships from FAPESP (TT-2, Grant. 2002/01497-1), CNPq (Grants 501858/2005-9, 372654/2006-1, 372810/2008-0, 372877/2010-9, and 372838/2018-9), and FAEPA (Grants 345/2009 and 185/2010).

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflicts of interest concerning the work presented herein.

References

  1. 1.
    Eriksen J, Ekholm O, Sjøgren P, Rasmussen NK (2004) Development of and recovery from long-term pain. A 6-year follow-up study of a cross-section of the adult Danish population. Pain 108:154–162.  https://doi.org/10.1016/j.pain.2003.12.018 CrossRefGoogle Scholar
  2. 2.
    Elliott WA, Smith AM, Hannaford BH, Smith PC, Chambers WC (2002) The course of chronic pain in the community: results of a 4-year follow-up study. Pain 99:299–307.  https://doi.org/10.1016/S0304-3959(02)00138-0 CrossRefGoogle Scholar
  3. 3.
    Reitsma M, Tranmer JE, Buchanan DM, VanDenKerkhof EG (2012) The epidemiology of chronic pain in Canadian men and women between 1994 and 2007: longitudinal results of the National Population Health Survey. Pain Res Manag 17:166–172CrossRefGoogle Scholar
  4. 4.
    Velly AM, Mohit S (2012) Epidemiology of pain and relation to psychiatric disorders. Prog Neuropsychopharmacol Biol Psychiatr S0278-5846(17):30194-X.  https://doi.org/10.1016/j.pnpbp.2017.05.012 Google Scholar
  5. 5.
    Gaskin DJ, Richard P (2011) The economic costs of pain in the United States, in: IOM (Institute of Medicine). Relieving Pain in America: a blueprint for transforming prevention, care, education, and research. The National Academies Press, Washington, DC, pp 301–315.  https://doi.org/10.17226/13172 Google Scholar
  6. 6.
    Woolf CJ, Mannion RJ (1999) Neuropathic pain: aetiology, symptoms, mechanisms, and management. Lancet 353:1959–1964.  https://doi.org/10.1016/S0140-6736(99)01307-0 CrossRefGoogle Scholar
  7. 7.
    Dworkin RH, Backonja M, Rowbotham MC, Allen RR, Argoff CR, Bennett GJ, Bushnell MC, Farrar JT, Galer BS, Haythornthwaite JA, Hewitt DJ, Loeser JD, Max MB, Saltarelli M, Schmader KE, Stein C, Thompson D, Turk DC, Wallace MS, Watkins LR, Weinstein SM (2003) Advances in neuropathic pain: diagnosis, mechanisms, and treatment recommendations. Arch Neurol 60:1524–1534.  https://doi.org/10.1001/archneur.60.11.1524 CrossRefGoogle Scholar
  8. 8.
    Wang LX, Wang ZJ (2003) Animal and cellular models of chronic pain. Adv Drug Deliv Rev 55:949–965.  https://doi.org/10.1016/S0169-409X(03)00098-X CrossRefGoogle Scholar
  9. 9.
    Xu B, Descalzi G, Ye HR, Zhuo M, Wang YW (2012) Translational investigation and treatment of neuropathic pain. Mol Pain 8:15.  https://doi.org/10.1186/1744-8069-8-15 CrossRefGoogle Scholar
  10. 10.
    Basbaum AI, Bautista DM, Scherrer G, Julius D (2009) Cellular and molecular mechanisms of pain. Cell 139:267–284.  https://doi.org/10.1016/j.cell.2009.09.028 CrossRefGoogle Scholar
  11. 11.
    Ikeda H, Stark J, Fischer H, Wagner M, Drdla R, Jager T, Sandkuhler J (2006) Synaptic amplifier of inflammatory pain in the spinal dorsal horn. Science 312:1659–1662.  https://doi.org/10.1126/science.1127233 CrossRefGoogle Scholar
  12. 12.
    Sandkuhler J (2007) Understanding LTP in pain pathways. Mol Pain 3:9.  https://doi.org/10.1186/1744-8069-3-9 CrossRefGoogle Scholar
  13. 13.
    Bennett GJ, Xie YK (1998) A peripheral mononeuropathy in rat that produces disorders of pain sensation like those seen in man. Pain 33:87–107.  https://doi.org/10.1016/0304-3959(88)90209-6 CrossRefGoogle Scholar
  14. 14.
    Seltzer Z, Dubner R, Shir Y (1990) A novel behavioral model of neuropathic pain disorders produced in rats by partial sciatic nerve injury. Pain 43:205–218.  https://doi.org/10.1016/0304-3959(90)91074-S CrossRefGoogle Scholar
  15. 15.
    Kim SH, Chung JM (1992) An experimental model for peripheral neuropathy produced by segmental spinal nerve ligation in the rat. Pain 50:355–363.  https://doi.org/10.1016/0304-3959(92)90041-9 CrossRefGoogle Scholar
  16. 16.
    Dias QM, Rossaneis AC, Fais RS, Prado WA (2913) An improved experimental model for peripheral neuropathy in rats. Braz J Med Biol Res 46:253–256.  https://doi.org/10.1590/1414-431x20122462 CrossRefGoogle Scholar
  17. 17.
    Syriatowicz JP, Hu D, Walker JS, Tracey DJ (1999) Hyperalgesia due to nerve injury: role of prostaglandins. Neuroscience 94:587–594.  https://doi.org/10.1016/S0306-4522(99)00365-6 CrossRefGoogle Scholar
  18. 18.
    Lorenz J, Cross DJ, Minoshima S, Morrow TJ, Paulson PE, Casey KL (2002) A unique representation of heat allodynia in the human brain. Neuron 35:383–393.  https://doi.org/10.1016/S0896-6273(02)00767-5 CrossRefGoogle Scholar
  19. 19.
    Rainville P, Duncan GH, Price DD, Carrier B, Bushnell MC (1997) Pain affect encoded in human anterior cingulate but not somatosensory cortex. Science 277:968–971.  https://doi.org/10.1126/science.277.5328.968 CrossRefGoogle Scholar
  20. 20.
    Porro CA, Baraldi P, Pagnoni G, Serafini M, Facchin P, Maieron M, Nichelli P (2002) Does anticipation of pain affect cortical nociceptive systems? J Neurosci 22:3206–3214.CrossRefGoogle Scholar
  21. 21.
    de Freitas RL, Salgado-Rohner CJ, Hallak JEC, de Souza Crippa JA, Coimbra NC (2013) Involvement of prelimbic medial prefrontal cortex in panic-like elaborated defensive behaviour and innate fear-induced antinociception elicited by GABA A receptor blockade in the dorsomedial and ventromedial hypothalamic nuclei: role of the endocannabinoid CB 1 receptor. Int J Neuropsychopharmacol 16:1781–1798.  https://doi.org/10.1017/S1461145713000163 CrossRefGoogle Scholar
  22. 22.
    de Freitas RL, Salgado-Rohner CJ, Biagioni AF, Medeiros P, Hallak JEC, Crippa JAS, Coimbra NC (2014) NMDA and AMPA/kainate glutamatergic receptors in the prelimbic medial prefrontal cortex modulate the elaborated defensive behavior and innate fear-induced antinociception elicited by GABAA receptor blockade in the medial hypothalamus. Cereb Cortex 24:1518–1528.  https://doi.org/10.1093/cercor/bht001 CrossRefGoogle Scholar
  23. 23.
    Bassi GS, Kanashiro A, Rodrigues GJ, Cunha FQ, Coimbra NC, Ulloa L (2018) Brain stimulation differentially modulates nociception and inflammation in aversive and non-aversive behavioral conditions. Neuroscience 383:191–204CrossRefGoogle Scholar
  24. 24.
    Falconi-Sobrinho LL, Dos Anjos-Garcia T, Elias-Filho DH, Coimbra NC (2017) Unravelling cortico-hypothalamic pathways regulating unconditioned fear-induced antinociception and defensive behaviours. Neuropharmacology 113:367–385.  https://doi.org/10.1016/j.neuropharm.2016.10.001 CrossRefGoogle Scholar
  25. 25.
    Wang GQ, Cen C, Li C, Cao S, Wang N, Zhou Z, Liu XM, Xu Y, Tian NX, Zhang Y, Wang J, Wang LP, Wang Y (2015) Deactivation of excitatory neurons in the prelimbic cortex via Cdk5 promotes pain sensation and anxiety. Nat Commun 6:7660.  https://doi.org/10.1038/ncomms8660 CrossRefGoogle Scholar
  26. 26.
    Zhuo M (2008) Cortical excitation and chronic pain. Trends Neurosci 31:199–207.  https://doi.org/10.1016/j.tins.2008.01.003 CrossRefGoogle Scholar
  27. 27.
    Zimmermann M (2008) Ethical guidelines for investigations of experimental pain in conscious animals. Pain 16:109–110.  https://doi.org/10.1016/0304-3959(83)90201-4 CrossRefGoogle Scholar
  28. 28.
    von Frey M (1925) Für eine Anatomisch-Physiologische Arbeitsgemeinschaft. Wilhelm Roux Arch Entwickl Mech Org 106:1–5.  https://doi.org/10.1007/BF02079523 CrossRefGoogle Scholar
  29. 29.
    Vivancos GG, Verri WAJ, Cunha TM, Schivo IRS, Parada CA, Cunha FQ, Ferreira SH (2004) An electronic pressure-meter nociception paw test for rats. Braz J Med Biol Res 37:391–399.  https://doi.org/10.1590/S0100-879X2004000300017 CrossRefGoogle Scholar
  30. 30.
    Resstel LBM, Correa FMA (2006) Medial prefrontal cortex NMDA receptors and nitric oxide modulate the parasympathetic component of the baroreflex. Eur J Neurosci 23:481–488.  https://doi.org/10.1111/j.1460-9568.2005.04566.x CrossRefGoogle Scholar
  31. 31.
    de Freitas RL, Bolognesi LI, Twardowschy A, Corrêa FMA, Sibson NR, Coimbra NC (2013) Neuroanatomical and neuropharmacological approaches to postictal antinociception-related prosencephalic neurons: the role of muscarinic and nicotinic cholinergic receptors. Brain Behav 3:286–301.  https://doi.org/10.1002/brb3.105 CrossRefGoogle Scholar
  32. 32.
    de Freitas RL, de Oliveira RC, de Oliveira R, Paschoalin-Maurin T, de Aguiar Correa FM, Coimbra NC (2014) The role of dorsomedial and ventrolateral columns of the periaqueductal gray matter and in situ 5-HT2A and 5-HT2C serotonergic receptors in post-ictal antinociception. Synapse 68:16–30.  https://doi.org/10.1002/syn.21697 CrossRefGoogle Scholar
  33. 33.
    de Freitas RL, Medeiros P, Almeida J, De Oliveira RC, De Oliveira R, Ullah F, Khan AU, Coimbra NC (2016) The μ1-opioid receptor and 5-HT2A- and 5-HT2C-serotonergic receptors of the locus coeruleus are critical in elaborating hypoalgesia induced by tonic and tonic – clonic seizures. Neuroscience 336:133–145.  https://doi.org/10.1016/j.neuroscience.2016.08.040 CrossRefGoogle Scholar
  34. 34.
    Paxinos G, Watson C (1997) The rat brain in stereotaxic coordinates, 3rd edn. Academic Press, LondonGoogle Scholar
  35. 35.
    Xu H, Wu LJ, Wang H, Zhang X, Vadakkan KI, Kim SS, Steenland HW, Zhuo M (2008) Presynaptic and postsynaptic amplifications of neuropathic pain in the anterior cingulate cortex. J Neurosci 28:7445–7453.  https://doi.org/10.1523/JNEUROSCI.1812-08.2008 CrossRefGoogle Scholar
  36. 36.
    Munger BL (1982) Multiple afferent innervation of primate facial hairs–Henry Head and Max von Frey revisited. Brain Res 257:1–43CrossRefGoogle Scholar
  37. 37.
    Cheriyan J, Sheets PL (2018) Altered excitability and local connectivity of mPFC-PAG neurons in a mouse model of neuropathic pain. J Neurosci 38:4829–4839.  https://doi.org/10.1523/JNEUROSCI.2731-17.2018 CrossRefGoogle Scholar
  38. 38.
    Kai Y, Li Y, Sun T, Yin W, Mao Y, Li J, Xie W, Chen S, Wang L, Li J, Zhang Z, Tao W (2018) A medial prefrontal cortex-nucleus accumbens corticotropin-releasing factor circuitry for neuropathic pain-increased susceptibility to opioid reward. Transl Psychiatr 8:100.  https://doi.org/10.1038/s41398-018-0152-4 CrossRefGoogle Scholar
  39. 39.
    Barcelon EE, Cho WH, Jun SB, Lee SJ (2019) Brain microglial activation in chronic pain-associated affective disorder. Front Neurosci 13(213):2019.  https://doi.org/10.3389/fnins.2019.00213.eCollection Google Scholar
  40. 40.
    Palmisano M, Caputi FF, Mercatelli D, Romualdi P, Candeletti S (2018) Dynorphinergic system alterations in the corticostriatal circuitry of neuropathic mice support its role in the negative affective component of pain. Genes Brain Behav 12:e12467.  https://doi.org/10.1111/gbb.12467 Google Scholar
  41. 41.
    Wall PD, Gutnick M (1974) Ongoing activity in peripheral nerves: the physiology and pharmacology of impulses originating from a neuroma. Exp Neurol 43:580–593CrossRefGoogle Scholar
  42. 42.
    McLachlan EM, Janig W, Devor M, Michaelis M (1993) Peripheral nerve injury triggers noradrenergic sprouting within dorsal root ganglia. Nature 363:543–546.  https://doi.org/10.1038/363543a0 CrossRefGoogle Scholar
  43. 43.
    Basbaum AI, Bautista DM, Scherrer G, Julius D (2010) Cellular and molecular mechanisms of pain. Cell 139:267–284.  https://doi.org/10.1016/j.cell.2009.09.028 CrossRefGoogle Scholar
  44. 44.
    Zhuo M (2014) Long-term potentiation in the anterior cingulate cortex and chronic pain. Philos Trans R Soc Lond B Biol Sci 369:20130146.  https://doi.org/10.1098/rstb.2013.0146 CrossRefGoogle Scholar
  45. 45.
    Sandkuhler J, Liu X (1998) Induction of long-term potentiation at spinal synapses by noxious stimulation or nerve injury. Eur J Neurosci 10:2476–2480.  https://doi.org/10.1046/j.1460-9568.1998.00278.x CrossRefGoogle Scholar
  46. 46.
    Nardone R, Höller Y, Brigo F, Seidl M, Christova M, Bergmann J, Golaszewski S, Trinka E (2013) Functional brain reorganization after spinal cord injury: systematic review of animal and human studies. Brain Res 1504:58–73.  https://doi.org/10.1016/j.brainres.2012.12.034 CrossRefGoogle Scholar
  47. 47.
    Geha PY, Baliki MN, Wang X, Harden RN, Paice JA, Apkarian AV (2008) Brain dynamics for perception of tactile allodynia (touch-induced pain) in postherpetic neuralgia. Pain 138:641–656.  https://doi.org/10.1016/j.pain.2008.02.021 CrossRefGoogle Scholar
  48. 48.
    Gustin SM, Wrigley PJ, Siddall PJ, Henderson LA (2010) Brain anatomy changes associated with persistent neuropathic pain following spinal cord injury. Cereb Cortex 20:1409–1419.  https://doi.org/10.1093/cercor/bhp205 CrossRefGoogle Scholar
  49. 49.
    Latremoliere A, Woolf CJ (2009) Central sensitization: a generator of pain hypersensitivity by central neural plasticity. J Pain 10:895–926.  https://doi.org/10.1016/j.jpain.2009.06.012 CrossRefGoogle Scholar
  50. 50.
    Zhao MG, Toyoda H, Lee YS, Wu LJ, Ko SW, Zhang XH, Jia Y, Shum F, Xu H, Li BM, Kaang BK, Zhuo M (2005) Roles of NMDA NR2B subtype receptor in prefrontal long-term potentiation and contextual fear memory. Neuron 47:859–872.  https://doi.org/10.1016/j.neuron.2005.08.014 CrossRefGoogle Scholar
  51. 51.
    MacDonald JF, Jackson MF, Beazely MA (2006) Hippocampal long-term synaptic plasticity and signal amplification of NMDA receptors. Crit Rev Neurobiol 18(1–2):71–84CrossRefGoogle Scholar
  52. 52.
    Nakazawa T, Komai S, Tezuka T, Hisatsune C, Umemori H, Semba K, Mishina M, Manabe T, Yamamoto T (2001) Characterization of Fyn-mediated tyrosine phosphorylation sites on GluR epsilon 2 (NR2B) subunit of the N-methyl-D-aspartate receptor. J Biol Chem 276(1):693–699.  https://doi.org/10.1074/jbc.M008085200 CrossRefGoogle Scholar
  53. 53.
    Chen BS, Roche KW (2007) Regulation of NMDA receptors by phosphorylation. Neuropharmacology 53(3):362–368CrossRefGoogle Scholar
  54. 54.
    Li S, Cao J, Yang X, Suo ZW, Shi L, Liu YN, Yang HB, Hu XD (2011) NR2B phosphorylation at tyrosine 1472 in spinal dorsal horn contributed to N-methyl-D-aspartate-induced pain hypersensitivity in mice. J Neurosci Res 89(11):1869–1876.  https://doi.org/10.1002/jnr.22719 CrossRefGoogle Scholar
  55. 55.
    Qu XX, Cai J, Li MJ, Chi YN, Liao FF, Liu FY, Wan Y, Han JS, Xing GG (2009) Role of the spinal cord NR2B-containing NMDA receptors in the development of neuropathic pain. Exp Neurol 215(2):298–307.  https://doi.org/10.1016/j.expneurol.2008.10.018 CrossRefGoogle Scholar
  56. 56.
    Kristensen JD, Svensson B, Gordh TJ (1992) The NMDA-receptor antagonist CPP abolishes neurogenic “wind-up pain” after intrathecal administration in humans. Pain 51:249–253.  https://doi.org/10.1016/0304-3959(92)90266-E CrossRefGoogle Scholar
  57. 57.
    Eide PK, Jorum E, Stubhaug A, Bremnes J, Breivik H (1994) Relief of post-herpetic neuralgia with the N-methyl-d-aspartic acid receptor antagonist ketamine: a double-blind, cross-over comparison with morphine and placebo. Pain 58:347–354CrossRefGoogle Scholar
  58. 58.
    Felsby S, Nielsen J, Arendt-Nielsen L, Jensen TS (1996) NMDA receptor blockade in chronic neuropathic pain: a comparison of ketamine and magnesium chloride. Pain 64:283–291.  https://doi.org/10.1016/0304-3959(95)00113-1 CrossRefGoogle Scholar
  59. 59.
    Wu LJ, Toyoda H, Zhao MG, Lee YS, Tang J, Ko SW, Jia YH, Shum FWF, Zerbinatti CV, Bu G, Wei F, Xu TL, Muglia LJ, Chen ZF, Auberson YP, Kaang BK, Zhuo M (2005) Upregulation of forebrain NMDA NR2B receptors contributes to behavioral sensitization after inflammation. J Neurosci 25:11107–11116.  https://doi.org/10.1523/JNEUROSCI.1678-05.2005 CrossRefGoogle Scholar
  60. 60.
    Millecamps M, Centeno MV, Berra HH, Rudick CN, Lavarello S, Tkatch T, Apkarian AV (2011) D-cycloserine reduces neuropathic pain behavior through limbic NMDA-mediated circuitry. Pain 132:108–123.  https://doi.org/10.1016/j.pain.2007.03.003 CrossRefGoogle Scholar
  61. 61.
    Heidbreder CA, Groenewegen HJ (2003) The medial prefrontal cortex in the rat: evidence for a dorso-ventral distinction based upon functional and anatomical characteristics. Neurosci Biobehav Rev 27:555–579.  https://doi.org/10.1016/j.neubiorev.2003.09.003 CrossRefGoogle Scholar
  62. 62.
    Giordano C, Cristino L, Luongo L, Siniscalco D, Petrosino S, Piscitelli F, Marabese I, Gatta L, Rossi F, Imperatore R, Palazzo E, de Novellis V, Di Marzo V, Maione S (2012) TRPV1-dependent and -independent alterations in the limbic cortex of neuropathic mice: impact on glial caspases and pain perception. Cereb Cortex 22:2495–2518.  https://doi.org/10.1093/cercor/bhr328 CrossRefGoogle Scholar
  63. 63.
    Palazzo E, Romano R, Luongo L, Boccella S, De Gregorio D, Giordano ME, Rossi F, Marabese I, Scafuro MA, de Novellis V, Maione S (2015) MMPIP, an mGluR7-selective negative allosteric modulator, alleviates pain and normalizes affective and cognitive behavior in neuropathic mice. Pain 156:1060–1073.  https://doi.org/10.1097/j.pain.0000000000000150 Google Scholar
  64. 64.
    Wei F, Wang GD, Kerchner GA, Kim SJ, Xu HM, Chen ZF, Zhuo M (2001) Genetic enhancement of inflammatory pain by forebrain NR2B overexpression. Nat Neurosci 4:164–169.  https://doi.org/10.1038/83993 CrossRefGoogle Scholar
  65. 65.
    Qiu S, Chen T, Koga K, Guo Y, Xu H, Song Q, Wang J, Descalzi G, Kaang B-K, Luo J, Zhuo M, Zhao M (2013) An increase in synaptic NMDA receptors in the insular cortex contributes to neuropathic pain. Sci Signal 6:ra34.  https://doi.org/10.1126/scisignal.2003778 CrossRefGoogle Scholar
  66. 66.
    Zhuo M (2009) Plasticity of NMDA receptor NR2B subunit in memory and chronic pain. Mol Brain 2:1–11.  https://doi.org/10.1186/1756-6606-2-4 CrossRefGoogle Scholar
  67. 67.
    Yang J-X, Hua L, Li Y-Q, Jiang Y-Y, Han D, Liu H, Tang Q-Q, Yang X-N, Yin C, Hao L-Y, Yu L, Wu P, Shao C-J, Ding H-L, Zhang Y-M, Cao J-L (2015) Caveolin-1 in the anterior cingulate cortex modulates chronic neuropathic pain via regulation of NMDA receptor 2B subunit. J Neurosci 35:36–52.  https://doi.org/10.1523/JNEUROSCI.1161-14.2015 CrossRefGoogle Scholar
  68. 68.
    Yanagisawa Y, Furue H, Kawamata T, Uta D, Yamamoto J, Furuse S, Katafuchi T, Imoto K, Iwamoto Y, Yoshimura M (2010) Bone cancer induces a unique central sensitization through synaptic changes in a wide area of the spinal cord. Mol Pain 6:38.  https://doi.org/10.1186/1744-8069-6-38 CrossRefGoogle Scholar
  69. 69.
    Zhang R, Liu Y, Zhang J, Zheng Y, Gu X, Ma Z (2012) Intrathecal administration of roscovitine attenuates cancer pain and inhibits the expression of NMDA receptor 2B subunit mRNA. Pharmacol Biochem Behav 102:139–145.  https://doi.org/10.1016/j.pbb.2012.03.025 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Neuroscience Laboratory of Pain & Emotions and Multi-User Centre of Neuroelectrophysiology, Department of Surgery and Anatomy, Ribeirão Preto Medical SchoolUniversity of São PauloRibeirão PretoBrazil
  2. 2.Laboratory of Neuroanatomy and Neuropsychobiology, Department of PharmacologyRibeirão Preto Medical School of the University of São Paulo (FMRP-USP)Ribeirão PretoBrazil
  3. 3.Laboratory of Pain and Inflammation, Department of PharmacologyRibeirão Preto Medical School of the University of São Paulo (FMRP-USP)Ribeirão PretoBrazil
  4. 4.Department of PsychologyRibeirão Preto School of Philosophy, Sciences and Literature of the University of São PauloRibeirão PretoBrazil
  5. 5.Biomedical Sciences InstituteFederal University of Alfenas (UNIFAL-MG)AlfenasBrazil
  6. 6.Division of Pharmacology, Department of Experimental MedicineUniversita degli Studi della Campania Luigi VanvitelliNaplesItaly
  7. 7.Behavioural Neurosciences Institute (INeC)Ribeirão PretoBrazil

Personalised recommendations