Disubstituted Dithiolethione ACDT Exerts Neuroprotective Effects Against 6-Hydroxydopamine-Induced Oxidative Stress in SH-SY5Y Cells

  • Swati BethariaEmail author
  • Alejandro N. Rondόn-Ortiz
  • Dennis A. Brown
Original Paper


Parkinson’s disease (PD) is a prevalent, progressive, neurodegenerative disorder with no known cure. Oxidative stress has been found to play a significant role in its etiology, and the search for novel neuroprotective compounds that actively prevent disease progression is currently ongoing. Dithiolethiones are a group of sulfur-containing heterocyclic compounds found in cruciferous vegetables. Using the 6-hydroxydopamine (6-OHDA) model of PD, we tested a previously identified disubstituted dithiolethione 5-amino-3-thioxo-3H-(1,2) dithiole-4-carboxylic acid ethyl ester (ACDT) for its neuroprotective potential. Pretreatment of SH-SY5Y cells with ACDT led to a time- and concentration-dependent induction of the antioxidant glutathione (GSH). ACDT also diminished 6-OHDA-induced cell death, lactate dehydrogenase release, elevation of caspase 3/7 activity, and increase in levels of reactive oxygen species. Inhibition of the GSH-synthesizing enzyme glutamate-cysteine ligase catalytic subunit (GCLC) led a corresponding dissipation of ACDT’s neuroprotective effects, hence underlining the importance of GSH in ACDT’s neuroprotective response. ACDT caused the stabilization and nuclear translocation of nuclear factor erythroid-2 related factor (Nrf2), resulting in increased protein expression of the phase II enzyme NADPH:quinone oxidoreductase 1 (NQO1), and the excitatory amino acid cysteine membrane transporter (EAAT3). Interestingly, no changes in the levels of other Nrf2-dependent molecules including GCLC were observed, indicating the possible involvement of additional alternate mechanisms behind ACDT’s GSH-inducing property. Collectively, the data demonstrated ACDT to be a promising new dithiolethione for the treatment of PD, with two modifiable functional groups offering additional avenues for enhanced pharmacological application.


ACDT Dithiolethione Glutathione Nrf2 Neuroprotection Oxidative stress 



This work was supported by Manchester University College of Pharmacy, Natural & Health Science, Fort Wayne, IN, and MCPHS University School of Pharmacy, Boston, MA. The authors wish to thank Evan Beakas, Rosary Ajaelu, and Iman Aoude for their participation in the project.


  1. 1.
    Postuma RB, Berg D, Stern M, Poewe W, Olanow CW, Oertel W, Obeso J, Marek K, Litvan I, Lang AE, Halliday G, Goetz CG, Gasser T, Dubois B, Chan P, Bloem BR, Adler CH, Deuschl G (2015) MDS clinical diagnostic criteria for Parkinson’s disease. Mov Disord 30(12):1591–1601. Google Scholar
  2. 2.
    Spina MB, Cohen G (1989) Dopamine turnover and glutathione oxidation: implications for Parkinson disease. Proc Natl Acad Sci USA 86(4):1398–1400Google Scholar
  3. 3.
    Ben-Shachar D, Youdim MB (1993) Iron, melanin and dopamine interaction: relevance to Parkinson’s disease. Prog Neuropsychopharmacol Biol Psychiatry 17(1):139–150Google Scholar
  4. 4.
    Gerlach M, Double KL, Ben-Shachar D, Zecca L, Youdim MB, Riederer P (2003) Neuromelanin and its interaction with iron as a potential risk factor for dopaminergic neurodegeneration underlying Parkinson’s disease. Neurotox Res 5(1–2):35–44Google Scholar
  5. 5.
    Gotz ME, Double K, Gerlach M, Youdim MB, Riederer P (2004) The relevance of iron in the pathogenesis of Parkinson’s disease. Ann N Y Acad Sci 1012:193–208Google Scholar
  6. 6.
    Enochs WS, Sarna T, Zecca L, Riley PA, Swartz HM (1994) The roles of neuromelanin, binding of metal ions, and oxidative cytotoxicity in the pathogenesis of Parkinson’s disease: a hypothesis. J Neural Transm Park Dis Dement Sect 7(2):83–100Google Scholar
  7. 7.
    Dexter DT, Carter CJ, Wells FR, Javoy-Agid F, Agid Y, Lees A, Jenner P, Marsden CD (1989) Basal lipid peroxidation in substantia nigra is increased in Parkinson’s disease. J Neurochem 52(2):381–389Google Scholar
  8. 8.
    Sherer TB, Betarbet R, Greenamyre JT (2002) Environment, mitochondria, and Parkinson’s disease. Neuroscientist 8(3):192–197. Google Scholar
  9. 9.
    Spencer JP, Jenner A, Aruoma OI, Evans PJ, Kaur H, Dexter DT, Jenner P, Lees AJ, Marsden DC, Halliwell B (1994) Intense oxidative DNA damage promoted by L-dopa and its metabolites. Implications for neurodegenerative disease. FEBS Lett 353(3):246–250Google Scholar
  10. 10.
    Sugawara T, Chan PH (2003) Reactive oxygen radicals and pathogenesis of neuronal death after cerebral ischemia. Antioxid Redox Signal 5(5):597–607. Google Scholar
  11. 11.
    Alam ZI, Jenner A, Daniel SE, Lees AJ, Cairns N, Marsden CD, Jenner P, Halliwell B (1997) Oxidative DNA damage in the parkinsonian brain: an apparent selective increase in 8-hydroxyguanine levels in substantia nigra. J Neurochem 69(3):1196–1203Google Scholar
  12. 12.
    Castellani RJ, Perry G, Siedlak SL, Nunomura A, Shimohama S, Zhang J, Montine T, Sayre LM, Smith MA (2002) Hydroxynonenal adducts indicate a role for lipid peroxidation in neocortical and brainstem Lewy bodies in humans. Neurosci Lett 319(1):25–28Google Scholar
  13. 13.
    Perry TL, Yong VW (1986) Idiopathic Parkinson’s disease, progressive supranuclear palsy and glutathione metabolism in the substantia nigra of patients. Neurosci Lett 67(3):269–274Google Scholar
  14. 14.
    Siegel D, Bolton EM, Burr JA, Liebler DC, Ross D (1997) The reduction of alpha-tocopherolquinone by human NAD(P)H: quinone oxidoreductase: the role of alpha-tocopherolhydroquinone as a cellular antioxidant. Mol Pharmacol 52(2):300–305Google Scholar
  15. 15.
    Spencer JP, Jenner P, Daniel SE, Lees AJ, Marsden DC, Halliwell B (1998) Conjugates of catecholamines with cysteine and GSH in Parkinson’s disease: possible mechanisms of formation involving reactive oxygen species. J Neurochem 71(5):2112–2122Google Scholar
  16. 16.
    Ross D (2004) Quinone reductases multitasking in the metabolic world. Drug Metab Rev 36(3–4):639–654. Google Scholar
  17. 17.
    Ross D, Kepa JK, Winski SL, Beall HD, Anwar A, Siegel D (2000) NAD(P)H:quinone oxidoreductase 1 (NQO1): chemoprotection, bioactivation, gene regulation and genetic polymorphisms. Chem Biol Interact 129(1–2):77–97Google Scholar
  18. 18.
    Siegel D, Gustafson DL, Dehn DL, Han JY, Boonchoong P, Berliner LJ, Ross D (2004) NAD(P)H:quinone oxidoreductase 1: role as a superoxide scavenger. Mol Pharmacol 65(5):1238–1247. Google Scholar
  19. 19.
    Pearce RK, Owen A, Daniel S, Jenner P, Marsden CD (1997) Alterations in the distribution of glutathione in the substantia nigra in Parkinson’s disease. J Neural Transm 104(6–7):661–677. Google Scholar
  20. 20.
    Mytilineou C, Kramer BC, Yabut JA (2002) Glutathione depletion and oxidative stress. Parkinsonism Relat Disord 8(6):385–387Google Scholar
  21. 21.
    Perry TL, Godin DV, Hansen S (1982) Parkinson’s disease: a disorder due to nigral glutathione deficiency? Neurosci Lett 33(3):305–310Google Scholar
  22. 22.
    Spencer JP, Jenner P, Halliwell B (1995) Superoxide-dependent depletion of reduced glutathione by L-DOPA and dopamine. Relevance to Parkinson’s disease. NeuroReport 6(11):1480–1484Google Scholar
  23. 23.
    Jenner P, Dexter DT, Sian J, Schapira AH, Marsden CD (1992) Oxidative stress as a cause of nigral cell death in Parkinson’s disease and incidental Lewy body disease. The Royal Kings and Queens Parkinson’s Disease Research Group. Ann Neurol 32(Suppl):S82–S87Google Scholar
  24. 24.
    Ahlskog JE (1990) Parkinson’s disease: new treatment strategies. Compr Ther 16(12):41–46Google Scholar
  25. 25.
    Ballaz S, Morales I, Rodriguez M, Obeso JA (2013) Ascorbate prevents cell death from prolonged exposure to glutamate in an in vitro model of human dopaminergic neurons. J Neurosci Res 91(12):1609–1617. Google Scholar
  26. 26.
    Kittur S, Wilasrusmee S, Pedersen WA, Mattson MP, Straube-West K, Wilasrusmee C, Lubelt B, Kittur DS (2002) Neurotrophic and neuroprotective effects of milk thistle (Silybum marianum) on neurons in culture. J Mol Neurosci 18(3):265–269Google Scholar
  27. 27.
    Korytowski W, Sarna T, Zarba M (1995) Antioxidant action of neuromelanin: the mechanism of inhibitory effect on lipid peroxidation. Arch Biochem Biophys 319(1):142–148Google Scholar
  28. 28.
    Sechi G, Deledda MG, Bua G, Satta WM, Deiana GA, Pes GM, Rosati G (1996) Reduced intravenous glutathione in the treatment of early Parkinson’s disease. Prog Neuropsychopharmacol Biol Psychiatry 20(7):1159–1170Google Scholar
  29. 29.
    Sharma A, Kaur P, Kumar V, Gill KD (2007) Attenuation of 1-methyl-4-phenyl-1, 2,3,6-tetrahydropyridine induced nigrostriatal toxicity in mice by N-acetyl cysteine. Cell Mol Biol 53(1):48–55Google Scholar
  30. 30.
    Ebadi M, Srinivasan SK, Baxi MD (1996) Oxidative stress and antioxidant therapy in Parkinson’s disease. Prog Neurobiol 48(1):1–19Google Scholar
  31. 31.
    Ratnam DV, Ankola DD, Bhardwaj V, Sahana DK, Kumar MN (2006) Role of antioxidants in prophylaxis and therapy: a pharmaceutical perspective. J Control Release 113(3):189–207. Google Scholar
  32. 32.
    Yang KY, du Hwang H, Yousaf AM, Kim DW, Shin YJ, Bae ON, Kim YI, Kim JO, Yong CS, Choi HG (2013) Silymarin-loaded solid nanoparticles provide excellent hepatic protection: physicochemical characterization and in vivo evaluation. Int J Nanomed 8:3333–3343. Google Scholar
  33. 33.
    Cao Z, Hardej D, Trombetta LD, Trush MA, Li Y (2003) Induction of cellular glutathione and glutathione S-transferase by 3H-1,2-dithiole-3-thione in rat aortic smooth muscle A10 cells: protection against acrolein-induced toxicity. Atherosclerosis 166(2):291–301Google Scholar
  34. 34.
    Kwak MK, Egner PA, Dolan PM, Ramos-Gomez M, Groopman JD, Itoh K, Yamamoto M, Kensler TW (2001) Role of phase 2 enzyme induction in chemoprotection by dithiolethiones. Mutat Res 480–481:305–315Google Scholar
  35. 35.
    Jia Z, Misra BR, Zhu H, Li Y, Misra HP (2009) Upregulation of cellular glutathione by 3H-1,2-dithiole-3-thione as a possible treatment strategy for protecting against acrolein-induced neurocytotoxicity. Neurotoxicology 30(1):1–9. Google Scholar
  36. 36.
    Jia Z, Zhu H, Misra HP, Li Y (2008) Potent induction of total cellular GSH and NQO1 as well as mitochondrial GSH by 3H-1,2-dithiole-3-thione in SH-SY5Y neuroblastoma cells and primary human neurons: protection against neurocytotoxicity elicited by dopamine, 6-hydroxydopamine, 4-hydroxy-2-nonenal, or hydrogen peroxide. Brain Res 1197:159–169. Google Scholar
  37. 37.
    Kuo PC, Brown DA, Scofield BA, Yu IC, Chang FL, Wang PY, Yen JH (2016) 3H-1,2-dithiole-3-thione as a novel therapeutic agent for the treatment of experimental autoimmune encephalomyelitis. Brain Behav Immun 57:173–186. Google Scholar
  38. 38.
    Kuo PC, Brown DA, Scofield BA, Paraiso HC, Wang PY, Yu IC, Yen JH (2018) Dithiolethione ACDT suppresses neuroinflammation and ameliorates disease severity in experimental autoimmune encephalomyelitis. Brain Behav Immun 70:76–87. Google Scholar
  39. 39.
    Kuo PC, Yu IC, Scofield BA, Brown DA, Curfman ET, Paraiso HC, Chang FL, Yen JH (2017) 3H-1,2-Dithiole-3-thione as a novel therapeutic agent for the treatment of ischemic stroke through Nrf2 defense pathway. Brain Behav Immun 62:180–192. Google Scholar
  40. 40.
    Cui Y, Ma S, Zhang C, Li D, Yang B, Lv P, Xing Q, Huang T, Yang GL, Cao W, Guan F (2018) Pharmacological activation of the Nrf2 pathway by 3H-1, 2-dithiole-3-thione is neuroprotective in a mouse model of Alzheimer disease. Behav Brain Res 336:219–226. Google Scholar
  41. 41.
    Wang L, Wang M, Hu J, Shen W, Hu J, Yao Y, Wang X, Afzal CM, Ma R, Li G (2017) Protective effect of 3H-1, 2-dithiole-3-thione on cellular model of Alzheimer’s disease involves Nrf2/ARE signaling pathway. Eur J Pharmacol 795:115–123. Google Scholar
  42. 42.
    Brown DA, Betharia S, Yen JH, Kuo PC, Mistry H (2016) Further structure-activity relationships study of substituted dithiolethiones as glutathione-inducing neuroprotective agents. Chem Cent J 10:64. Google Scholar
  43. 43.
    Rondon-Ortiz AN, Lino Cardenas CL, Martinez-Malaga J, Gonzales-Urday AL, Gugnani KS, Bohlke M, Maher TJ, Pino-Figueroa AJ (2017) High concentrations of rosiglitazone reduce mRNA and protein levels of LRP1 in HepG2 cells. Front Pharmacol 8:772. Google Scholar
  44. 44.
    Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez JY, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9(7):676–682. Google Scholar
  45. 45.
    Kumar R, Agarwal AK, Seth PK (1995) Free radical-generated neurotoxicity of 6-hydroxydopamine. J Neurochem 64(4):1703–1707Google Scholar
  46. 46.
    Soto-Otero R, Mendez-Alvarez E, Hermida-Ameijeiras A, Munoz-Patino AM, Labandeira-Garcia JL (2000) Autoxidation and neurotoxicity of 6-hydroxydopamine in the presence of some antioxidants: potential implication in relation to the pathogenesis of Parkinson’s disease. J Neurochem 74(4):1605–1612Google Scholar
  47. 47.
    Raichle ME, Gusnard DA (2002) Appraising the brain’s energy budget. Proc Natl Acad Sci USA 99(16):10237–10239. Google Scholar
  48. 48.
    Coles LD, Tuite PJ, Oz G, Mishra UR, Kartha RV, Sullivan KM, Cloyd JC, Terpstra M (2018) Repeated-dose oral N-acetylcysteine in Parkinson’s disease: pharmacokinetics and effect on brain glutathione and oxidative stress. J Clin Pharmacol 58(2):158–167. Google Scholar
  49. 49.
    Fariss MW, Zhang JG (2003) Vitamin E therapy in Parkinson’s disease. Toxicology 189(1–2):129–146Google Scholar
  50. 50.
    Matthews RT, Ferrante RJ, Klivenyi P, Yang L, Klein AM, Mueller G, Kaddurah-Daouk R, Beal MF (1999) Creatine and cyclocreatine attenuate MPTP neurotoxicity. Exp Neurol 157(1):142–149. Google Scholar
  51. 51.
    Mazzio E, Huber J, Darling S, Harris N, Soliman KF (2001) Effect of antioxidants on L-glutamate and N-methyl-4-phenylpyridinium ion induced-neurotoxicity in PC12 cells. Neurotoxicology 22(2):283–288Google Scholar
  52. 52.
    Mischley LK, Lau RC, Shankland EG, Wilbur TK, Padowski JM (2017) Phase IIb study of intranasal glutathione in Parkinson’s disease. J Parkinsons Dis 7(2):289–299. Google Scholar
  53. 53.
    Stull ND, Polan DP, Iacovitti L (2002) Antioxidant compounds protect dopamine neurons from death due to oxidative stress in vitro. Brain Res 931(2):181–185Google Scholar
  54. 54.
    Zhu ZG, Sun MX, Zhang WL, Wang WW, Jin YM, Xie CL (2017) The efficacy and safety of coenzyme Q10 in Parkinson’s disease: a meta-analysis of randomized controlled trials. Neurol Sci 38(2):215–224. Google Scholar
  55. 55.
    Peng X, Li Y (2002) Induction of cellular glutathione-linked enzymes and catalase by the unique chemoprotective agent, 3H-1,2-dithiole-3-thione in rat cardiomyocytes affords protection against oxidative cell injury. Pharmacol Res 45(6):491–497Google Scholar
  56. 56.
    Vargas M, Lamb JG, Franklin MR (1998) Phase II-selective induction of hepatic drug-metabolizing enzymes by oltipraz -5-(2-pyrazinyl)-4-methyl-1,2-dithiol-3-thione-, 1,7-phenanthroline, and 2,2′-dipyridyl in rats is not accompanied by induction of intestinal enzymes. Drug Metab Dispos 26(2):91–97Google Scholar
  57. 57.
    Zhang Y, Munday R (2008) Dithiolethiones for cancer chemoprevention: where do we stand? Mol Cancer Ther 7(11):3470–3479. Google Scholar
  58. 58.
    Brown DA, Betharia S, Yen JH, Tran Q, Mistry H, Smith K (2014) Synthesis and structure-activity relationships study of dithiolethiones as inducers of glutathione in the SH-SY5Y neuroblastoma cell line. Bioorg Med Chem Lett 24(24):5829–5831. Google Scholar
  59. 59.
    Dong J, Yan D, Chen SY (2011) Stabilization of Nrf2 protein by D3T provides protection against ethanol-induced apoptosis in PC12 cells. PLoS ONE 6(2):e16845. Google Scholar
  60. 60.
    Liu XY, Li CY, Bu H, Li Z, Li B, Sun MM, Guo YS, Zhang L, Ren WB, Fan ZL, Wu DX, Wu SY (2008) The neuroprotective potential of phase II enzyme inducer on motor neuron survival in traumatic spinal cord injury in vitro. Cell Mol Neurobiol 28(5):769–779. Google Scholar
  61. 61.
    Munday R, Zhang Y, Paonessa JD, Munday CM, Wilkins AL, Babu J (2010) Synthesis, biological evaluation, and structure-activity relationships of dithiolethiones as inducers of cytoprotective phase 2 enzymes. J Med Chem 53(12):4761–4767. Google Scholar
  62. 62.
    Yu Z, Shao W, Chiang Y, Foltz W, Zhang Z, Ling W, Fantus IG, Jin T (2011) Oltipraz upregulates the nuclear factor (erythroid-derived 2)-like 2 [corrected](NRF2) antioxidant system and prevents insulin resistance and obesity induced by a high-fat diet in C57BL/6 J mice. Diabetologia 54(4):922–934. Google Scholar
  63. 63.
    McMahon M, Itoh K, Yamamoto M, Hayes JD (2003) Keap1-dependent proteasomal degradation of transcription factor Nrf2 contributes to the negative regulation of antioxidant response element-driven gene expression. J Biol Chem 278(24):21592–21600. Google Scholar
  64. 64.
    Nguyen T, Sherratt PJ, Nioi P, Yang CS, Pickett CB (2005) Nrf2 controls constitutive and inducible expression of ARE-driven genes through a dynamic pathway involving nucleocytoplasmic shuttling by Keap1. J Biol Chem 280(37):32485–32492. Google Scholar
  65. 65.
    Wakabayashi N, Dinkova-Kostova AT, Holtzclaw WD, Kang MI, Kobayashi A, Yamamoto M, Kensler TW, Talalay P (2004) Protection against electrophile and oxidant stress by induction of the phase 2 response: fate of cysteines of the Keap1 sensor modified by inducers. Proc Natl Acad Sci USA 101(7):2040–2045. Google Scholar
  66. 66.
    Zhang DD, Hannink M (2003) Distinct cysteine residues in Keap1 are required for Keap1-dependent ubiquitination of Nrf2 and for stabilization of Nrf2 by chemopreventive agents and oxidative stress. Mol Cell Biol 23(22):8137–8151Google Scholar
  67. 67.
    Zhu H, Itoh K, Yamamoto M, Zweier JL, Li Y (2005) Role of Nrf2 signaling in regulation of antioxidants and phase 2 enzymes in cardiac fibroblasts: protection against reactive oxygen and nitrogen species-induced cell injury. FEBS Lett 579(14):3029–3036. Google Scholar
  68. 68.
    Holland R, Navamal M, Velayutham M, Zweier JL, Kensler TW, Fishbein JC (2009) Hydrogen peroxide is a second messenger in phase 2 enzyme induction by cancer chemopreventive dithiolethiones. Chem Res Toxicol 22(8):1427–1434. Google Scholar
  69. 69.
    Petzer JP, Navamal M, Johnson JK, Kwak MK, Kensler TW, Fishbein JC (2003) Phase 2 enzyme induction by the major metabolite of oltipraz. Chem Res Toxicol 16(11):1463–1469. Google Scholar
  70. 70.
    Xie HR, Hu LS, Li GY (2010) SH-SY5Y human neuroblastoma cell line: in vitro cell model of dopaminergic neurons in Parkinson’s disease. Chin Med J 123(8):1086–1092Google Scholar
  71. 71.
    Smythies J (1999) The neurotoxicity of glutamate, dopamine, iron and reactive oxygen species: functional interrelationships in health and disease: a review-discussion. Neurotox Res 1(1):27–39Google Scholar
  72. 72.
    Pazdro R, Burgess JR (2012) The antioxidant 3H-1,2-dithiole-3-thione potentiates advanced glycation end-product-induced oxidative stress in SH-SY5Y cells. Exp Diabetes Res 2012:137607. Google Scholar
  73. 73.
    Zhang C, Xie L, Guan F, Cui Y (2018) 3H-1,2-dithiole-3-thione protects PC12 cells against amyloid beta 1-42 (Abeta1-42) induced apoptosis via activation of the ERK1/2 pathway. Life Sci 213:74–81. Google Scholar
  74. 74.
    Zhu H, Zhang L, Itoh K, Yamamoto M, Ross D, Trush MA, Zweier JL, Li Y (2006) Nrf2 controls bone marrow stromal cell susceptibility to oxidative and electrophilic stress. Free Radic Biol Med 41(1):132–143. Google Scholar
  75. 75.
    Zhu H, Zhang L, Trush MA, Li Y (2007) Upregulation of endogenous glutathione system by 3H-1,2-dithiole-3-thione in pancreatic RINm5F beta-cells as a novel strategy for protecting against oxidative beta-cell injury. Free Radic Res 41(2):242–250. Google Scholar
  76. 76.
    Ikeda Y, Tsuji S, Satoh A, Ishikura M, Shirasawa T, Shimizu T (2008) Protective effects of astaxanthin on 6-hydroxydopamine-induced apoptosis in human neuroblastoma SH-SY5Y cells. J Neurochem 107(6):1730–1740. Google Scholar
  77. 77.
    Dong J, Sulik KK, Chen SY (2008) Nrf2-mediated transcriptional induction of antioxidant response in mouse embryos exposed to ethanol in vivo: implications for the prevention of fetal alcohol spectrum disorders. Antioxid Redox Signal 10(12):2023–2033. Google Scholar
  78. 78.
    Manandhar S, Cho JM, Kim JA, Kensler TW, Kwak MK (2007) Induction of Nrf2-regulated genes by 3H-1, 2-dithiole-3-thione through the ERK signaling pathway in murine keratinocytes. Eur J Pharmacol 577(1–3):17–27. Google Scholar
  79. 79.
    Escartin C, Won SJ, Malgorn C, Auregan G, Berman AE, Chen PC, Deglon N, Johnson JA, Suh SW, Swanson RA (2011) Nuclear factor erythroid 2-related factor 2 facilitates neuronal glutathione synthesis by upregulating neuronal excitatory amino acid transporter 3 expression. J Neurosci 31(20):7392–7401. Google Scholar
  80. 80.
    Sasaki H, Sato H, Kuriyama-Matsumura K, Sato K, Maebara K, Wang H, Tamba M, Itoh K, Yamamoto M, Bannai S (2002) Electrophile response element-mediated induction of the cystine/glutamate exchange transporter gene expression. J Biol Chem 277(47):44765–44771. Google Scholar
  81. 81.
    Jing X, Shi H, Zhang C, Ren M, Han M, Wei X, Zhang X, Lou H (2015) Dimethyl fumarate attenuates 6-OHDA-induced neurotoxicity in SH-SY5Y cells and in animal model of Parkinson’s disease by enhancing Nrf2 activity. Neuroscience 286:131–140. Google Scholar
  82. 82.
    Huang HC, Nguyen T, Pickett CB (2002) Phosphorylation of Nrf2 at Ser-40 by protein kinase C regulates antioxidant response element-mediated transcription. J Biol Chem 277(45):42769–42774. Google Scholar
  83. 83.
    Koo JH, Lee WH, Lee CG, Kim SG (2012) Fyn inhibition by cycloalkane-fused 1,2-dithiole-3-thiones enhances antioxidant capacity and protects mitochondria from oxidative injury. Mol Pharmacol 82(1):27–36. Google Scholar
  84. 84.
    Lee JM, Hanson JM, Chu WA, Johnson JA (2001) Phosphatidylinositol 3-kinase, not extracellular signal-regulated kinase, regulates activation of the antioxidant-responsive element in IMR-32 human neuroblastoma cells. J Biol Chem 276(23):20011–20016. Google Scholar
  85. 85.
    Yu R, Lei W, Mandlekar S, Weber MJ, Der CJ, Wu J, Kong AN (1999) Role of a mitogen-activated protein kinase pathway in the induction of phase II detoxifying enzymes by chemicals. J Biol Chem 274(39):27545–27552Google Scholar
  86. 86.
    Yu R, Mandlekar S, Lei W, Fahl WE, Tan TH, Kong AN (2000) p38 mitogen-activated protein kinase negatively regulates the induction of phase II drug-metabolizing enzymes that detoxify carcinogens. J Biol Chem 275(4):2322–2327Google Scholar
  87. 87.
    Nguyen T, Sherratt PJ, Huang HC, Yang CS, Pickett CB (2003) Increased protein stability as a mechanism that enhances Nrf2-mediated transcriptional activation of the antioxidant response element. Degradation of Nrf2 by the 26 S proteasome. J Biol Chem 278(7):4536–4541. Google Scholar
  88. 88.
    Munday R, Munday CM (2004) Induction of phase II enzymes by 3H-1,2-dithiole-3-thione: dose-response study in rats. Carcinogenesis 25(9):1721–1725. Google Scholar
  89. 89.
    Zheng Y, Ji X, Ji K, Wang B (2015) Hydrogen sulfide prodrugs—a review. Acta Pharm Sin B 5(5):367–377. Google Scholar
  90. 90.
    Yang G, Zhao K, Ju Y, Mani S, Cao Q, Puukila S, Khaper N, Wu L, Wang R (2013) Hydrogen sulfide protects against cellular senescence via S-sulfhydration of Keap1 and activation of Nrf2. Antioxid Redox Signal 18(15):1906–1919. Google Scholar
  91. 91.
    Kimura Y, Kimura H (2004) Hydrogen sulfide protects neurons from oxidative stress. FASEB J 18(10):1165–1167. Google Scholar
  92. 92.
    Chen WL, Niu YY, Jiang WZ, Tang HL, Zhang C, Xia QM, Tang XQ (2015) Neuroprotective effects of hydrogen sulfide and the underlying signaling pathways. Rev Neurosci 26(2):129–142. Google Scholar
  93. 93.
    Meister A, Anderson ME (1983) Glutathione. Annu Rev Biochem 52:711–760. Google Scholar
  94. 94.
    Zhang H, Liu H, Dickinson DA, Liu RM, Postlethwait EM, Laperche Y, Forman HJ (2006) gamma-Glutamyl transpeptidase is induced by 4-hydroxynonenal via EpRE/Nrf2 signaling in rat epithelial type II cells. Free Radic Biol Med 40(8):1281–1292. Google Scholar
  95. 95.
    Alroughani R, Ahmed SF, Behbehani R, Al-Hashel J (2017) Effectiveness and safety of dimethyl fumarate treatment in relapsing multiple sclerosis patients: real-world evidence. Neurol Ther 6(2):189–196. Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Pharmaceutical Sciences, School of PharmacyMCPHS UniversityBostonUSA
  2. 2.Department of Pharmaceutical Sciences, College of Pharmacy, Natural & Health SciencesManchester UniversityFort WayneUSA

Personalised recommendations