Advertisement

Silibinin Alleviates the Learning and Memory Defects in Overtrained Rats Accompanying Reduced Neuronal Apoptosis and Senescence

  • Bo Liu
  • Weiwei Liu
  • Panwen Liu
  • Xiumin Liu
  • Xiaoyu Song
  • Toshihiko Hayashi
  • Satoshi Onodera
  • Takashi IkejimaEmail author
Original Paper
  • 39 Downloads

Abstract

Excessive physical exercise (overtraining; OT) increases oxidative stress and induces damage in multiple organs including the brain, especially the hippocampus that plays an important role in learning and memory. Silibinin, a natural flavonoid derived from milk thistle of Silybum marianum, has been reported to exert neuroprotective effect. In this study, rats were subjected to overtraining exercise, and the protective effects of silibinin were investigated in these models. Morris water maze and novel object recognition tests showed that silibinin significantly attenuated memory defects in overtrained rats. At the same time, the results of Nissl, TUNEL and SA-β-gal staining showed that silibinin reversed neuronal loss caused by apoptosis, and delayed cell senescence of the hippocampus in the overtrained rats, respectively. In addition, silibinin decreased malondialdehyde (MDA) levels which is associated with reactive oxygen species (ROS) generation. Silibinin prevented impairment of learning and memory caused by excessive physical exercise in rats, accompanied by reduced apoptosis and senescence in hippocampus cells.

Keywords

Overtraining Silibinin Hippocampus Apoptosis Senescence 

Notes

References

  1. 1.
    Fiuza-Luces C, Santos-Lozano A, Joyner M, Carrera-Bastos P, Picazo O, Zugaza JL, Izquierdo M, Ruilope LM, Lucia A (2018) Exercise benefits in cardiovascular disease: beyond attenuation of traditional risk factors. Nat Rev Cardiol 15:731–743CrossRefGoogle Scholar
  2. 2.
    Cai H, Li G, Zhang P, Xu D, Chen L (2017) Effect of exercise on the quality of life in type 2 diabetes mellitus: a systematic review. Qual Life Res 26:515–530CrossRefGoogle Scholar
  3. 3.
    Panza GA, Taylor BA, MacDonald HV, Johnson BT, Zaleski AL, Livingston J, Thompson PD, Pescatello LS (2018) Can exercise improve cognitive symptoms of Alzheimer's disease? J Am Geriatr Soc 66:487–495CrossRefGoogle Scholar
  4. 4.
    Meeusen R, Duclos M, Foster C, Fry A, Gleeson M, Nieman D, Raglin J, Rietjens G, Steinacker J, Urhausen A European College of Sport S, American College of Sports M (2013) Prevention, diagnosis, and treatment of the overtraining syndrome: joint consensus statement of the European College of Sport Science and the American College of Sports Medicine. Med Sci Sports Exerc 45:186–205CrossRefGoogle Scholar
  5. 5.
    Kadaja L, Eimre M, Paju K, Roosimaa M, Podramagi T, Kaasik P, Pehme A, Orlova E, Mudist M, Peet N, Piirsoo A, Seene T, Gellerich FN, Seppet EK (2010) Impaired oxidative phosphorylation in overtrained rat myocardium. Exp Clin Cardiol 15:e116–127Google Scholar
  6. 6.
    Wu GL, Chen YS, Huang XD, Zhang LX (2012) Exhaustive swimming exercise related kidney injury in rats—protective effects of acetylbritannilactone. Int J Sports Med 33:1–7CrossRefGoogle Scholar
  7. 7.
    Smith LL (2000) Cytokine hypothesis of overtraining: a physiological adaptation to excessive stress? Med Sci Sports Exerc 32:317–331CrossRefGoogle Scholar
  8. 8.
    Eich TS, Metcalfe J (2009) Effects of the stress of marathon running on implicit and explicit memory. Psychon Bull Rev 16:475–479CrossRefGoogle Scholar
  9. 9.
    Sun LN, Li XL, Wang F, Zhang J, Wang DD, Yuan L, Wu MN, Wang ZJ, Qi JS (2017) High-intensity treadmill running impairs cognitive behavior and hippocampal synaptic plasticity of rats via activation of inflammatory response. J Neurosci Res 95:1611–1620CrossRefGoogle Scholar
  10. 10.
    Bartsch T, Wulff P (2015) The hippocampus in aging and disease: from plasticity to vulnerability. Neuroscience 309:1–16CrossRefGoogle Scholar
  11. 11.
    Dimauro I, Mercatelli N, Caporossi D (2016) Exercise-induced ROS in heat shock proteins response. Free Radic Biol Med 98:46–55CrossRefGoogle Scholar
  12. 12.
    Li H, Miao W, Ma J, Xv Z, Bo H, Li J, Zhang Y, Ji LL (2016) Acute exercise-induced mitochondrial stress triggers an inflammatory response in the myocardium via NLRP3 inflammasome activation with mitophagy. Oxid Med Cell Longev 2016:1987149Google Scholar
  13. 13.
    Morton JP, Kayani AC, McArdle A, Drust B (2009) The exercise-induced stress response of skeletal muscle, with specific emphasis on humans. Sports Med 39:643–662CrossRefGoogle Scholar
  14. 14.
    Sliter DA, Martinez J, Hao L, Chen X, Sun N, Fischer TD, Burman JL, Li Y, Zhang Z, Narendra DP, Cai H, Borsche M, Klein C, Youle RJ (2018) Parkin and PINK1 mitigate STING-induced inflammation. Nature 561:258–262CrossRefGoogle Scholar
  15. 15.
    Aguiar AS Jr, Tuon T, Pinho CA, Silva LA, Andreazza AC, Kapczinski F, Quevedo J, Streck EL, Pinho RA (2008) Intense exercise induces mitochondrial dysfunction in mice brain. Neurochem Res 33:51–58CrossRefGoogle Scholar
  16. 16.
    Wang Q, Zou L, Liu W, Hao W, Tashiro S, Onodera S, Ikejima T (2011) Inhibiting NF-kappaB activation and ROS production are involved in the mechanism of silibinin's protection against D-galactose-induced senescence. Pharmacol Biochem Behav 98:140–149CrossRefGoogle Scholar
  17. 17.
    Fougere B, Boulanger E, Nourhashemi F, Guyonnet S, Cesari M (2017) Chronic inflammation: accelerator of biological aging. J Gerontol A Biol Sci Med Sci 72:1218–1225CrossRefGoogle Scholar
  18. 18.
    He L, Chen Y, Feng J, Sun W, Li S, Ou M, Tang L (2017) Cellular senescence regulated by SWI/SNF complex subunits through p53/p21 and p16/pRB pathway. Int J Biochem Cell Biol 90:29–37CrossRefGoogle Scholar
  19. 19.
    Christian M, Beauséjour AK, Francesco Galimi MN, Scott W. Lowe PY, Judith (2003) Reversal of human cellular senescence: roles of the p53 and p16 pathways. EMBO J 22:4212–4222CrossRefGoogle Scholar
  20. 20.
    Bussian TJ, Aziz A, Meyer CF, Swenson BL, van Deursen JM, Baker DJ (2018) Clearance of senescent glial cells prevents tau-dependent pathology and cognitive decline. Nature 562:578–582CrossRefGoogle Scholar
  21. 21.
    Jiang W, Guo M, Gong M, Chen L, Bi Y, Zhang Y, Shi Y, Qu P, Liu Y, Chen J, Li T (2018) Vitamin A bio-modulates apoptosis via the mitochondrial pathway after hypoxic-ischemic brain damage. Mol Brain 11:14CrossRefGoogle Scholar
  22. 22.
    Chang KW, Zong HF, Ma KG, Zhai WY, Yang WN, Hu XD, Xu JH, Chen XL, Ji SF, Qian YH (2018) Activation of alpha7 nicotinic acetylcholine receptor alleviates Abeta1-42-induced neurotoxicity via downregulation of p38 and JNK MAPK signaling pathways. Neurochem Int 120:238–250CrossRefGoogle Scholar
  23. 23.
    Peng S, Wang C, Ma J, Jiang K, Jiang Y, Gu X, Sun C (2018) Achyranthes bidentata polypeptide protects dopaminergic neurons from apoptosis in Parkinson's disease models both in vitro and in vivo. Br J Pharmacol 175:631–643CrossRefGoogle Scholar
  24. 24.
    Mira L, Silva M, Manso CF (1994) Scavenging of reactive oxygen species by silibinin dihemisuccinate. Biochem Pharmacol 48:753–759CrossRefGoogle Scholar
  25. 25.
    Federico A, Dallio M, Loguercio C (2017) Silymarin/Silybin and chronic liver disease: a marriage of many years. Molecules 22:191CrossRefGoogle Scholar
  26. 26.
    Song X, Liu B, Cui L, Zhou B, Liu L, Liu W, Yao G, Xia M, Hayashi T, Hattori S, Ushiki-Kaku Y, Tashiro SI, Ikejima T (2018) Estrogen receptors are involved in the neuroprotective effect of Silibinin in abeta1-42-treated rats. Neurochem Res 43:796–805CrossRefGoogle Scholar
  27. 27.
    Yang J, Sun Y, Xu F, Liu W, Hayashi T, Onodera S, Tashiro SI, Ikejima T (2018) Involvement of estrogen receptors in silibinin protection of pancreatic beta-cells from TNFalpha- or IL-1beta-induced cytotoxicity. Biomed Pharmacother 102:344–353CrossRefGoogle Scholar
  28. 28.
    Song X, Zhou B, Cui L, Lei D, Zhang P, Yao G, Xia M, Hayashi T, Hattori S, Ushiki-Kaku Y, Tashiro SI, Onodera S, Ikejima T (2017) Silibinin ameliorates Abeta25-35-induced memory deficits in rats by modulating autophagy and attenuating neuroinflammation as well as oxidative stress. Neurochem Res 42:1073–1083CrossRefGoogle Scholar
  29. 29.
    Lu P, Mamiya T, Lu LL, Mouri A, Zou L, Nagai T, Hiramatsu M, Ikejima T, Nabeshima T (2009) Silibinin prevents amyloid beta peptide-induced memory impairment and oxidative stress in mice. Br J Pharmacol 157:1270–1277CrossRefGoogle Scholar
  30. 30.
    Tota S, Kamat PK, Shukla R, Nath C (2011) Improvement of brain energy metabolism and cholinergic functions contributes to the beneficial effects of silibinin against streptozotocin induced memory impairment. Behav Brain Res 221:207–215CrossRefGoogle Scholar
  31. 31.
    Bennett BT, Mohamed JS, Alway SE (2013) Effects of resveratrol on the recovery of muscle mass following disuse in the plantaris muscle of aged rats. PLoS ONE 8:e83518CrossRefGoogle Scholar
  32. 32.
    Kan NW, Ho CS, Chiu YS, Huang WC, Chen PY, Tung YT, Huang CC (2016) Effects of resveratrol supplementation and exercise training on exercise performance in middle-aged mice. Molecules 21:661CrossRefGoogle Scholar
  33. 33.
    Wu RE, Huang WC, Liao CC, Chang YK, Kan NW, Huang CC (2013) Resveratrol protects against physical fatigue and improves exercise performance in mice. Molecules 18:4689–4702CrossRefGoogle Scholar
  34. 34.
    Jardim FR, de Rossi FT, Nascimento MX, da Silva Barros RG, Borges PA, Prescilio IC, de Oliveira MR (2018) Resveratrol and brain mitochondria: a review. Mol Neurobiol 55:2085–2101CrossRefGoogle Scholar
  35. 35.
    Wiciński M, Leis K, Szyperski P, Węclewicz MM, Mazur E, Pawlak-Osińska K (2018) Impact of resveratrol on exercise performance: a review. Sci Sports 33:207–212CrossRefGoogle Scholar
  36. 36.
    Hohl R, Ferraresso RL, De Oliveira RB, Lucco R, Brenzikofer R, De Macedo DV (2009) Development and characterization of an overtraining animal model. Med Sci Sports Exerc 41:1155–1163CrossRefGoogle Scholar
  37. 37.
    Song X, Zhou B, Zhang P, Lei D, Wang Y, Yao G, Hayashi T, Xia M, Tashiro S, Onodera S, Ikejima T (2016) Protective effect of Silibinin on learning and memory impairment in LPS-treated rats via ROS-BDNF-TrkB pathway. Neurochem Res 41:1662–1672CrossRefGoogle Scholar
  38. 38.
    Garman RH (2011) Histology of the central nervous system. Toxicol Pathol 39:22–35CrossRefGoogle Scholar
  39. 39.
    Fletcher GF, Landolfo C, Niebauer J, Ozemek C, Arena R, Lavie CJ (2018) Reprint of: Promoting physical activity and exercise: JACC ealth promotion series. J Am Coll Cardiol 72:3053–3070CrossRefGoogle Scholar
  40. 40.
    Tuan TC, Hsu TG, Fong MC, Hsu CF, Tsai KK, Lee CY, Kong CW (2008) Deleterious effects of short-term, high-intensity exercise on immune function: evidence from leucocyte mitochondrial alterations and apoptosis. Br J Sports Med 42:11–15CrossRefGoogle Scholar
  41. 41.
    Liu H, Lei H, Shi Y, Wang JJ, Chen N, Li ZH, Chen YF, Ye QF, Yang Y (2017) Autophagy inhibitor 3-methyladenine alleviates overload-exercise-induced cardiac injury in rats. Acta Pharmacol Sin 38:990–997CrossRefGoogle Scholar
  42. 42.
    Halson SL, Jeukendrup AE (2004) Does overtraining exist? An analysis of overreaching and overtraining research. Sports Med 34:967–981CrossRefGoogle Scholar
  43. 43.
    Zoppi CC, Macedo DV (2008) Overreaching-induced oxidative stress, enhanced HSP72 expression, antioxidant and oxidative enzymes downregulation. Scand J Med Sci Sports 18:67–76CrossRefGoogle Scholar
  44. 44.
    Julien Finaud GLaEF (2006) Oxidative stress relationship with exercise and training. Sports Med 36:327–358CrossRefGoogle Scholar
  45. 45.
    Riezzo I, Cerretani D, Fiore C, Bello S, Centini F, D'Errico S, Fiaschi AI, Giorgi G, Neri M, Pomara C, Turillazzi E, Fineschi V (2010) Enzymatic-nonenzymatic cellular antioxidant defense systems response and immunohistochemical detection of MDMA, VMAT2, HSP70, and apoptosis as biomarkers for MDMA (Ecstasy) neurotoxicity. J Neurosci Res 88:905–916Google Scholar
  46. 46.
    Falkowska A, Gutowska I, Goschorska M, Nowacki P, Chlubek D, Baranowska-Bosiacka I (2015) Energy metabolism of the brain, including the cooperation between astrocytes and neurons, especially in the context of glycogen metabolism. Int J Mol Sci 16:25959–25981CrossRefGoogle Scholar
  47. 47.
    Camiletti-Moiron D, Aparicio VA, Aranda P, Radak Z (2013) Does exercise reduce brain oxidative stress? A systematic review. Scand J Med Sci Sports 23:e202–e212CrossRefGoogle Scholar
  48. 48.
    Gegentonglaga Yoshizato H, Higuchi Y, Toyota Y, Hanai Y, Ando Y, Yoshimura A (2013) Variable alteration of regional tissue oxygen pressure in rat hippocampus by acute swimming exercise. Life Sci 93:773–777CrossRefGoogle Scholar
  49. 49.
    Zheng JH, Viacava Follis A, Kriwacki RW, Moldoveanu T (2016) Discoveries and controversies in BCL-2 protein-mediated apoptosis. FEBS J 283:2690–2700CrossRefGoogle Scholar
  50. 50.
    Huang CC, Lin TJ, Chen CC, Lin WT (2009) Endurance training accelerates exhaustive exercise-induced mitochondrial DNA deletion and apoptosis of left ventricle myocardium in rats. Eur J Appl Physiol 107:697–706CrossRefGoogle Scholar
  51. 51.
    Mancuso M, Coppede F, Migliore L, Siciliano G, Murri L (2006) Mitochondrial dysfunction, oxidative stress and neurodegeneration. J Alzheimers Dis 10:59–73CrossRefGoogle Scholar
  52. 52.
    Bouzid MA, Filaire E, McCall A, Fabre C (2015) Radical oxygen species, exercise and aging: an update. Sports Med 45:1245–1261CrossRefGoogle Scholar
  53. 53.
    Tv Zglinicki (2002) Oxidative stress shortens telomeres. Trends Biochem Sci 27:339–343CrossRefGoogle Scholar
  54. 54.
    Joseph J, Cole G, Head E, Ingram D (2009) Nutrition, brain aging, and neurodegeneration. J Neurosci 29:12795–12801CrossRefGoogle Scholar
  55. 55.
    Narita M, Nuñez S, Heard E, Narita M, Lin AW, Hearn SA, Spector DL, Hannon GJ, Lowe SW (2003) Rb-mediated heterochromatin formation and silencing of E2F target genes during cellular senescence. Cell 113:703–716CrossRefGoogle Scholar
  56. 56.
    Wang JXQ, Rottinghaus GE (2002) Resveratrol protects against global cerebral ischemic injury in gerbils. Brain Res 958:439–447CrossRefGoogle Scholar
  57. 57.
    Li YR, Li S, Lin CC (2018) Effect of resveratrol and pterostilbene on aging and longevity. BioFactors 44:69–82CrossRefGoogle Scholar
  58. 58.
    Folbergrova J, Jesina P, Kubova H, Otahal J (2018) Effect of resveratrol on oxidative stress and mitochondrial dysfunction in immature brain during epileptogenesis. Mol Neurobiol 55:7512–7522CrossRefGoogle Scholar
  59. 59.
    Cadonic C, Sabbir MG, Albensi BC (2016) Mechanisms of mitochondrial dysfunction in Alzheimer's disease. Mol Neurobiol 53:6078–6090CrossRefGoogle Scholar
  60. 60.
    Ullah H, Khan H (2018) Anti-Parkinson potential of Silymarin: mechanistic insight and therapeutic standing. Front Pharmacol 9:422CrossRefGoogle Scholar
  61. 61.
    Duan S, Guan X, Lin R, Liu X, Yan Y, Lin R, Zhang T, Chen X, Huang J, Sun X, Li Q, Fang S, Xu J, Yao Z, Gu H (2015) Silibinin inhibits acetylcholinesterase activity and amyloid beta peptide aggregation: a dual-target drug for the treatment of Alzheimer's disease. Neurobiol Aging 36:1792–1807CrossRefGoogle Scholar
  62. 62.
    Wang M, Li YJ, Ding Y, Zhang HN, Sun T, Zhang K, Yang L, Guo YY, Liu SB, Zhao MG, Wu YM (2016) Silibinin prevents autophagic cell death upon oxidative stress in cortical neurons and cerebral ischemia-reperfusion injury. Mol Neurobiol 53:932–943CrossRefGoogle Scholar
  63. 63.
    Xie Z, Ding SQ, Shen YF (2014) Silibinin activates AMP-activated protein kinase to protect neuronal cells from oxygen and glucose deprivation-re-oxygenation. Biochem Biophys Res Commun 454:313–319CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Wuya College of InnovationShenyang Pharmaceutical UniversityShenyangPeople’s Republic of China
  2. 2.Medical Research CenterShenzhen University Health Science CenterShenzhenPeople’s Republic of China
  3. 3.Department of Chemistry and Life Science, School of Advanced EngineeringKogakuin UniversityHachiojiJapan
  4. 4.Medical Research Institute of Curing MibyoMechidaJapan
  5. 5.Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & DevelopmentShenyang Pharmaceutical UniversityShenyangPeople’s Republic of China

Personalised recommendations