Advertisement

The negative effect of magnetic nanoparticles with ascorbic acid on peritoneal macrophages

  • Klára Jiráková
  • Maksym Moskvin
  • Lucia Machová Urdzíková
  • Pavel Rössner
  • Fatima Elzeinová
  • Milada Chudíčková
  • Daniel Jirák
  • Natalia Ziolkowska
  • Daniel Horák
  • Šárka Kubinová
  • Pavla JendelováEmail author
Original Paper
  • 74 Downloads

Abstract

Superparamagnetic iron oxide nanoparticles (SPIOn) are widely used as a contrast agent for cell labeling. Macrophages are the first line of defense of organisms in contact with nanoparticles after their administration. In this study we investigated the effect of silica-coated nanoparticles (γ-Fe2O3–SiO2) with or without modification by an ascorbic acid (γ-Fe2O3–SiO2-ASA), which is meant to act as an antioxidative agent on rat peritoneal macrophages. Both types of nanoparticles were phagocytosed by macrophages in large amounts as confirmed by transmission electron microscopy and Prusian blue staining, however they did not substantially affect the viability of exposed cells in monitored intervals. We further explored cytotoxic effects related to oxidative stress, which is frequently documented in cells exposed to nanoparticles. Our analysis of double strand breaks (DSBs) marker γH2AX showed an increased number of DSBs in cells treated with nanoparticles. Nanoparticle exposure further revealed only slight changes in the expression of genes involved in oxidative stress response. Lipid peroxidation, another marker of oxidative stress, was not significantly affirmed after nanoparticle exposure. Our data indicate that the effect of both types of nanoparticles on cell viability, or biomolecules such as DNA or lipids, was similar; however the presence of ascorbic acid, either bound to the nanoparticles or added to the cultivation medium, worsened the negative effect of nanoparticles in various tests performed. The attachment of ascorbic acid on the surface of nanoparticles did not have a protective effect against induced cytotoxicity, as expected.

Keywords

Nanoparticles Macrophages Oxidative stress Cytotoxicity 

Notes

Acknowledgements

This study was supported by the Project InterAction LTAUSA 17120, by the Czech Science Foundation [Grant Number 16-14631S and 17-04918S], from Operational Programme Research, Development and Education in the framework of the Project “Center of Reconstructive Neuroscience”, Registration number CZ.02.1.01/0.0./0.0/15_003/0000419 and from National Sustainability Program I LO1309. K.J., M.M., D.H. and P.J. were members of the BIOCEV (CZ.1.05/1.1.00/02.0109) and their work was supported by the Ministry of Education, Youth and Sports of CR within the LQ1604 National Sustainability Program II (Project BIOCEV-FAR). The authors thank Dr. Lucie Svobodová and Petra Veselá for technical support.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Singh N, Jenkins GJ, Asadi R, Doak SH (2010) Potential toxicity of superparamagnetic iron oxide nanoparticles (SPION). Nano Rev 1:5358CrossRefGoogle Scholar
  2. 2.
    Bourquin J, Milosevic A, Hauser D, Lehner R, Blank F, Petri-Fink A, Rothen-Rutishauser B (2018) Biodistribution, clearance, and long-term fate of clinically relevant nanomaterials. Adv Mater 30:e1704307CrossRefGoogle Scholar
  3. 3.
    Yan H, Ding CG, Tian PX, Ge GQ, Jin ZK, Jia LN, Ding XM, Pan XM, Xue WJ (2009) Magnetic cell sorting and flow cytometry sorting methods for the isolation and function analysis of mouse CD4+ CD25+ Treg cells. J Zhejiang Univ Sci B 10:928–932CrossRefGoogle Scholar
  4. 4.
    Connell JJ, Patrick PS, Yu Y, Lythgoe MF, Kalber TL (2015) Advanced cell therapies: targeting, tracking and actuation of cells with magnetic particles. Regen Med 10:757–772CrossRefGoogle Scholar
  5. 5.
    McBain SC, Griesenbach U, Xenariou S, Keramane A, Batich CD, Alton EW, Dobson J (2008) Magnetic nanoparticles as gene delivery agents: enhanced transfection in the presence of oscillating magnet arrays. Nanotechnology 19:405102CrossRefGoogle Scholar
  6. 6.
    McBain SC, Yiu HH, Dobson J (2008) Magnetic nanoparticles for gene and drug delivery. Int J Nanomed 3:169–180Google Scholar
  7. 7.
    Torres-Lugo M, Rinaldi C (2013) Thermal potentiation of chemotherapy by magnetic nanoparticles. Nanomedicine 8:1689–1707CrossRefGoogle Scholar
  8. 8.
    Bull E, Madani SY, Sheth R, Seifalian A, Green M, Seifalian AM (2014) Stem cell tracking using iron oxide nanoparticles. Int J Nanomed 9:1641–1653Google Scholar
  9. 9.
    Bulte JW, Duncan ID, Frank JA (2002) In vivo magnetic resonance tracking of magnetically labeled cells after transplantation. J Cerebr Blood Flow Metab 22:899–907CrossRefGoogle Scholar
  10. 10.
    Hoehn M, Kustermann E, Blunk J, Wiedermann D, Trapp T, Wecker S, Focking M, Arnold H, Hescheler J, Fleischmann BK, Schwindt W, Buhrle C (2002) Monitoring of implanted stem cell migration in vivo: a highly resolved in vivo magnetic resonance imaging investigation of experimental stroke in rat. Proc Natl Acad Sci USA 99:16267–16272CrossRefGoogle Scholar
  11. 11.
    Jendelova P, Herynek V, DeCroos J, Glogarova K, Andersson B, Hajek M, Sykova E (2003) Imaging the fate of implanted bone marrow stromal cells labeled with superparamagnetic nanoparticles. Magn Reson Med 50:767–776CrossRefGoogle Scholar
  12. 12.
    Jendelova P, Herynek V, Urdzikova L, Glogarova K, Kroupova J, Andersson B, Bryja V, Burian M, Hajek M, Sykova E (2004) Magnetic resonance tracking of transplanted bone marrow and embryonic stem cells labeled by iron oxide nanoparticles in rat brain and spinal cord. J Neurosci Res 76:232–243CrossRefGoogle Scholar
  13. 13.
    Lee IH, Bulte JW, Schweinhardt P, Douglas T, Trifunovski A, Hofstetter C, Olson L, Spenger C (2004) In vivo magnetic resonance tracking of olfactory ensheathing glia grafted into the rat spinal cord. Exp Neurol 187:509–516CrossRefGoogle Scholar
  14. 14.
    Amemori T, Romanyuk N, Jendelova P, Herynek V, Turnovcova K, Prochazka P, Kapcalova M, Cocks G, Price J, Sykova E (2013) Human conditionally immortalized neural stem cells improve locomotor function after spinal cord injury in the rat. Stem Cell Res Ther 4:68CrossRefGoogle Scholar
  15. 15.
    Urdzikova L, Jendelova P, Glogarova K, Burian M, Hajek M, Sykova E (2006) Transplantation of bone marrow stem cells as well as mobilization by granulocyte-colony stimulating factor promotes recovery after spinal cord injury in rats. J Neurotrauma 23:1379–1391CrossRefGoogle Scholar
  16. 16.
    Novotna B, Jendelova P, Kapcalova M, Rossner P Jr, Turnovcova K, Bagryantseva Y, Babic M, Horak D, Sykova E (2012) Oxidative damage to biological macromolecules in human bone marrow mesenchymal stromal cells labeled with various types of iron oxide nanoparticles. Toxicol Lett 210:53–63CrossRefGoogle Scholar
  17. 17.
    Novotna B, Turnovcova K, Veverka P, Rossner P Jr, Bagryantseva Y, Herynek V, Zvatora P, Vosmanska M, Klementova M, Sykova E, Jendelova P (2016) The impact of silica encapsulated cobalt zinc ferrite nanoparticles on DNA, lipids and proteins of rat bone marrow mesenchymal stem cells. Nanotoxicology 10:662–670CrossRefGoogle Scholar
  18. 18.
    Avalos A, Haza AI, Mateo D, Morales P (2014) Cytotoxicity and ROS production of manufactured silver nanoparticles of different sizes in hepatoma and leukemia cells. J Appl Toxicol 34:413–423CrossRefGoogle Scholar
  19. 19.
    Pisanic TR 2nd, Blackwell JD, Shubayev VI, Finones RR, Jin S (2007) Nanotoxicity of iron oxide nanoparticle internalization in growing neurons. Biomaterials 28:2572–2581CrossRefGoogle Scholar
  20. 20.
    Ferchichi S, Trabelsi H, Azzouz I, Hanini A, Rejeb A, Tebourbi O, Sakly M, Abdelmelek H (2016) Evaluation of oxidative response and tissular damage in rat lungs exposed to silica-coated gold nanoparticles under static magnetic fields. Int J Nanomed 11:2711–2719CrossRefGoogle Scholar
  21. 21.
    Ho E, Karimi Galougahi K, Liu CC, Bhindi R, Figtree GA (2013) Biological markers of oxidative stress: applications to cardiovascular research and practice. Redox Biol 1:483–491CrossRefGoogle Scholar
  22. 22.
    Lunov O, Syrovets T, Buchele B, Jiang X, Rocker C, Tron K, Nienhaus GU, Walther P, Mailander V, Landfester K, Simmet T (2010) The effect of carboxydextran-coated superparamagnetic iron oxide nanoparticles on c-Jun N-terminal kinase-mediated apoptosis in human macrophages. Biomaterials 31:5063–5071CrossRefGoogle Scholar
  23. 23.
    Kusaczuk M, Kretowski R, Naumowicz M, Stypulkowska A, Cechowska-Pasko M (2018) Silica nanoparticle-induced oxidative stress and mitochondrial damage is followed by activation of intrinsic apoptosis pathway in glioblastoma cells. Int J Nanomed 13:2279–2294CrossRefGoogle Scholar
  24. 24.
    Sun L, Li Y, Liu X, Jin M, Zhang L, Du Z, Guo C, Huang P, Sun Z (2011) Cytotoxicity and mitochondrial damage caused by silica nanoparticles. Toxicol In Vitro 25:1619–1629CrossRefGoogle Scholar
  25. 25.
    Buyukhatipoglu K, Clyne AM (2011) Superparamagnetic iron oxide nanoparticles change endothelial cell morphology and mechanics via reactive oxygen species formation. J Biomed Mater Res Part A 96:186–195CrossRefGoogle Scholar
  26. 26.
    Skotland T, Iversen TG, Sandvig K (2010) New metal-based nanoparticles for intravenous use: requirements for clinical success with focus on medical imaging. Nanomed Nanotechnol Biol Med 6:730–737CrossRefGoogle Scholar
  27. 27.
    Morrissette N, Gold E, Aderem A (1999) The macrophage—a cell for all seasons. Trends Cell Biol 9:199–201CrossRefGoogle Scholar
  28. 28.
    Gorman AW, Deh KM, Schwiedrzik CM, White JR, Groman EV, Fisher CA, Gillen KM, Spincemaille P, Rasmussen S, Prince MR, Voss HU, Freiwald WA, Wang Y (2018) Brain iron distribution after multiple doses of ultra-small superparamagnetic iron oxide particles in rats. Comp Med 68:139–147Google Scholar
  29. 29.
    Lim DH, Jang J, Kim S, Kang T, Lee K, Choi IH (2012) The effects of sub-lethal concentrations of silver nanoparticles on inflammatory and stress genes in human macrophages using cDNA microarray analysis. Biomaterials 33:4690–4699CrossRefGoogle Scholar
  30. 30.
    Miao X, Leng X, Zhang Q (2017) The current state of nanoparticle-induced macrophage polarization and reprogramming research. Int J Mol Sci 18:336CrossRefGoogle Scholar
  31. 31.
    Bancos S, Stevens DL, Tyner KM (2015) Effect of silica and gold nanoparticles on macrophage proliferation, activation markers, cytokine production, and phagocytosis in vitro. Int J Nanomed 10:183–206Google Scholar
  32. 32.
    Keselman P, Yu EY, Zhou XY, Goodwill PW, Chandrasekharan P, Ferguson RM, Khandhar AP, Kemp SJ, Krishnan KM, Zheng B, Conolly SM (2017) Tracking short-term biodistribution and long-term clearance of SPIO tracers in magnetic particle imaging. Phys Med Biol 62:3440–3453CrossRefGoogle Scholar
  33. 33.
    Padayatty SJ, Katz A, Wang Y, Eck P, Kwon O, Lee JH, Chen S, Corpe C, Dutta A, Dutta SK, Levine M (2003) Vitamin C as an antioxidant: evaluation of its role in disease prevention. J Am Coll Nutr 22:18–35CrossRefGoogle Scholar
  34. 34.
    Moskvin M, Horak D (2016) Carbohydrate-modified magnetic nanoparticles for radical scavenging. Physiol Res 65:S243–S251Google Scholar
  35. 35.
    Kostecka P, Holy A, Farghali H, Zidek Z, Kmonickova E (2012) Differential effects of acyclic nucleoside phosphonates on nitric oxide and cytokines in rat hepatocytes and macrophages. Int Immunopharmacol 12:342–349CrossRefGoogle Scholar
  36. 36.
    Gorrini C, Harris IS, Mak TW (2013) Modulation of oxidative stress as an anticancer strategy. Nat Rev Drug Discov 12:931–947CrossRefGoogle Scholar
  37. 37.
    Vallabani NVS, Singh S (2018) Recent advances and future prospects of iron oxide nanoparticles in biomedicine and diagnostics. 3 Biotech 8:279CrossRefGoogle Scholar
  38. 38.
    Dobrovolskaia MA, Shurin M, Shvedova AA (2016) Current understanding of interactions between nanoparticles and the immune system. Toxicol Appl Pharmacol 299:78–89CrossRefGoogle Scholar
  39. 39.
    Gustafson HH, Holt-Casper D, Grainger DW, Ghandehari H (2015) Nanoparticle uptake: the phagocyte problem. Nano Today 10:487–510CrossRefGoogle Scholar
  40. 40.
    Pham BTT, Colvin EK, Pham NTH, Kim BJ, Fuller ES, Moon EA, Barbey R, Yuen S, Rickman BH, Bryce NS, Bickley S, Tanudji M, Jones SK, Howell VM, Hawkett BS (2018) Biodistribution and clearance of stable superparamagnetic maghemite iron oxide nanoparticles in mice following intraperitoneal administration. Int J Mol Sci 19:205CrossRefGoogle Scholar
  41. 41.
    Horák D, Babič M, Jendelová P, Herynek V, Trchová M, Likavčanová K, Kapcalová M, Hájek M, Syková E (2009) Effect of different magnetic nanoparticle coatings on the efficiency of stem cell labeling. J Magn Magn Mater 321:1539–1547CrossRefGoogle Scholar
  42. 42.
    Farcal L, Torres Andon F, Di Cristo L, Rotoli BM, Bussolati O, Bergamaschi E, Mech A, Hartmann NB, Rasmussen K, Riego-Sintes J, Ponti J, Kinsner-Ovaskainen A, Rossi F, Oomen A, Bos P, Chen R, Bai R, Chen C, Rocks L, Fulton N, Ross B, Hutchison G, Tran L, Mues S, Ossig R, Schnekenburger J, Campagnolo L, Vecchione L, Pietroiusti A, Fadeel B (2015) Comprehensive in vitro toxicity testing of a panel of representative oxide nanomaterials: first steps towards an intelligent testing strategy. PLoS ONE 10:e0127174CrossRefGoogle Scholar
  43. 43.
    Libalova H, Costa PM, Olsson M, Farcal L, Ortelli S, Blosi M, Topinka J, Costa AL, Fadeel B (2018) Toxicity of surface-modified copper oxide nanoparticles in a mouse macrophage cell line: interplay of particles, surface coating and particle dissolution. Chemosphere 196:482–493CrossRefGoogle Scholar
  44. 44.
    Valdiglesias V, Kilic G, Costa C, Fernandez-Bertolez N, Pasaro E, Teixeira JP, Laffon B (2015) Effects of iron oxide nanoparticles: cytotoxicity, genotoxicity, developmental toxicity, and neurotoxicity. Environ Mol Mutagen 56:125–148CrossRefGoogle Scholar
  45. 45.
    Nel A, Xia T, Madler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311:622–627CrossRefGoogle Scholar
  46. 46.
    Liu Y, Hong H, Lu X, Wang W, Liu F, Yang H (2017) l-Ascorbic acid protected against extrinsic and intrinsic apoptosis induced by cobalt nanoparticles through ROS attenuation. Biol Trace Elem Res 175:428–439CrossRefGoogle Scholar
  47. 47.
    Akhtar MJ, Kumar S, Murthy RC, Ashquin M, Khan MI, Patil G, Ahmad I (2010) The primary role of iron-mediated lipid peroxidation in the differential cytotoxicity caused by two varieties of talc nanoparticles on A549 cells and lipid peroxidation inhibitory effect exerted by ascorbic acid. Toxicol In Vitro 24:1139–1147CrossRefGoogle Scholar
  48. 48.
    Zhao X, Takabayashi F, Ibuki Y (2016) Coexposure to silver nanoparticles and ultraviolet A synergistically enhances the phosphorylation of histone H2AX. J Photochem Photobiol B 162:213–222CrossRefGoogle Scholar
  49. 49.
    Huang CC, Aronstam RS, Chen DR, Huang YW (2010) Oxidative stress, calcium homeostasis, and altered gene expression in human lung epithelial cells exposed to ZnO nanoparticles. Toxicol In Vitro 24:45–55CrossRefGoogle Scholar
  50. 50.
    Kim S, Jang J, Kim H, Choi H, Lee K, Choi IH (2012) The effects of silica nanoparticles in macrophage cells. Immune Netw 12:296–300CrossRefGoogle Scholar
  51. 51.
    Durdik S, Vrbovska H, Olas A, Babincova M (2013) Influence of naturally occurring antioxidants on magnetic nanoparticles: risks, benefits, and possible therapeutic applications. Gen Physiol Biophys 32:173–177CrossRefGoogle Scholar
  52. 52.
    Amatore C, Arbault S, MeloFerreira DC, Tapsota I, Verchier Y (2008) Vitamin C stimulates or attenuates reaction oxygen and nitrogen species (ROS, RNS) production depending on cell state: quantitative amperometric measurements of oxidative bursts at PLB-985 and RAW 264.7 cells at the single cell level. J Electroanal Chem 615:34–44CrossRefGoogle Scholar
  53. 53.
    Guo C, Xia Y, Niu P, Jiang L, Duan J, Yu Y, Zhou X, Li Y, Sun Z (2015) Silica nanoparticles induce oxidative stress, inflammation, and endothelial dysfunction in vitro via activation of the MAPK/Nrf2 pathway and nuclear factor-kappaB signaling. Int J Nanomed 10:1463–1477CrossRefGoogle Scholar
  54. 54.
    Toyokuni S (1998) Oxidative stress and cancer: the role of redox regulation. Biotherapy 11:147–154CrossRefGoogle Scholar
  55. 55.
    Rogakou EP, Pilch DR, Orr AH, Ivanova VS, Bonner WM (1998) DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J Biol Chem 273:5858–5868CrossRefGoogle Scholar
  56. 56.
    Branchetti E, Sainger R, Poggio P, Grau JB, Patterson-Fortin J, Bavaria JE, Chorny M, Lai E, Gorman RC, Levy RJ, Ferrari G (2013) Antioxidant enzymes reduce DNA damage and early activation of valvular interstitial cells in aortic valve sclerosis. Arterioscler Thromb Vasc Biol 33:e66–e74CrossRefGoogle Scholar
  57. 57.
    Gu Q, Feng T, Cao H, Tang Y, Ge X, Luo J, Xue J, Wu J, Yang H, Zhang S, Cao J (2013) HIV-TAT mediated protein transduction of Cu/Zn-superoxide dismutase-1 (SOD1) protects skin cells from ionizing radiation. Radiat Oncol 8:253CrossRefGoogle Scholar
  58. 58.
    Selvaratnam JS, Robaire B (2016) Effects of aging and oxidative stress on spermatozoa of superoxide-dismutase 1- and catalase-null mice. Biol Reprod 95:60CrossRefGoogle Scholar
  59. 59.
    Niki E (2008) Lipid peroxidation products as oxidative stress biomarkers. BioFactors 34:171–180CrossRefGoogle Scholar
  60. 60.
    Fuhrman B, Oiknine J, Aviram M (1994) Iron induces lipid peroxidation in cultured macrophages, increases their ability to oxidatively modify LDL, and affects their secretory properties. Atherosclerosis 111:65–78CrossRefGoogle Scholar
  61. 61.
    Lucarelli M, Gatti AM, Savarino G, Quattroni P, Martinelli L, Monari E, Boraschi D (2004) Innate defence functions of macrophages can be biased by nano-sized ceramic and metallic particles. Eur Cytokine Netw 15:339–346Google Scholar
  62. 62.
    Gensel JC, Zhang B (2015) Macrophage activation and its role in repair and pathology after spinal cord injury. Brain Res 1619:1–11CrossRefGoogle Scholar
  63. 63.
    Kusaka T, Nakayama M, Nakamura K, Ishimiya M, Furusawa E, Ogasawara K (2014) Effect of silica particle size on macrophage inflammatory responses. PLoS ONE 9:e92634CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Klára Jiráková
    • 1
  • Maksym Moskvin
    • 2
  • Lucia Machová Urdzíková
    • 1
  • Pavel Rössner
    • 3
  • Fatima Elzeinová
    • 3
  • Milada Chudíčková
    • 4
  • Daniel Jirák
    • 5
  • Natalia Ziolkowska
    • 5
  • Daniel Horák
    • 2
  • Šárka Kubinová
    • 4
  • Pavla Jendelová
    • 1
    • 6
    Email author
  1. 1.Department of NeuroregenerationInstitute of Experimental Medicine, Czech Academy of SciencesPrague 4Czech Republic
  2. 2.Department of Polymer ParticlesInstitute of Macromolecular Chemistry, Czech Academy of SciencesPragueCzech Republic
  3. 3.Department of Genetic Toxicology and NanotoxicologyInstitute of Experimental Medicine, Czech Academy of SciencesPragueCzech Republic
  4. 4.Department of Biomaterials and Biophysical MethodsInstitute of Experimental Medicine, Czech Academy of SciencesPragueCzech Republic
  5. 5.MR-Unit, Radiodiagnostic and Interventional Radiology DepartmentInstitute for Clinical and Experimental MedicinePragueCzech Republic
  6. 6.Department of NeuroscienceSecond Faculty of Medicine, Charles UniversityPragueCzech Republic

Personalised recommendations