Advertisement

NMDA Receptors in Astrocytes

  • Alexei VerkhratskyEmail author
  • Alexandr ChvátalEmail author
Original Paper

Abstract

Astrocytes support glutamatergic neurotransmission in the central nervous system through multiple mechanisms which include: (i) glutamate clearance and control over glutamate spillover due to operation of glutamate transporters; (ii) supply of obligatory glutamate precursor glutamine via operation of glutamate–glutamine shuttle; (iii) supply of l-serine, the indispensable precursor of positive NMDA receptors neuromodulator d-serine and (iv) through overall homoeostatic control of the synaptic cleft. Astroglial cells express an extended complement of ionotropic and metabotropic glutamate receptors, which mediate glutamatergic input to astrocytes. In particular a sub-population of astrocytes in the cortex and in the spinal cord express specific type of NMDA receptors assembled from two GluN1, one GluN2C or D and one GluN3 subunits. This composition underlies low Mg2+ sensitivity thus making astroglial NMDA receptors operational at resting membrane potential. These NMDA receptors generate ionic signals in astrocytes and are linked to several astroglial homoeostatic molecular cascades.

Keywords

Astrocyte Neurotransmitters Glutamate NMDA receptors 

Notes

References

  1. 1.
    Verkhratsky A, Nedergaard M (2016) The homeostatic astroglia emerges from evolutionary specialization of neural cells. Philos Trans R Soc Lond B Biol Sci 371  https://doi.org/10.1098/rstb.2015.0428
  2. 2.
    Verkhratsky A, Nedergaard M (2018) Physiology of astroglia. Physiol Rev 98:239–389.  https://doi.org/10.1152/physrev.00042.2016 CrossRefPubMedGoogle Scholar
  3. 3.
    Pekny M et al (2016) Astrocytes: a central element in neurological diseases. Acta Neuropathol 131:323–345.  https://doi.org/10.1007/s00401-015-1513-1 CrossRefPubMedGoogle Scholar
  4. 4.
    Sofroniew MV (2014) Multiple roles for astrocytes as effectors of cytokines and inflammatory mediators. Neuroscientist 20:160–172.  https://doi.org/10.1177/1073858413504466 CrossRefPubMedGoogle Scholar
  5. 5.
    Sofroniew MV (2015) Astrocyte barriers to neurotoxic inflammation. Nat Rev Neurosci 16:249–263.  https://doi.org/10.1038/nrn3898 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Verkhratsky A, Zorec R, Parpura V (2017) Stratification of astrocytes in healthy and diseased brain. Brain Pathol 27:629–644.  https://doi.org/10.1111/bpa.12537 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Kirischuk S, Parpura V, Verkhratsky A (2012) Sodium dynamics: another key to astroglial excitability? Trends Neurosci 35:497–506.  https://doi.org/10.1016/j.tins.2012.04.003 CrossRefPubMedGoogle Scholar
  8. 8.
    Rose CR, Verkhratsky A (2016) Principles of sodium homeostasis and sodium signalling in astroglia. Glia.  https://doi.org/10.1002/glia.22964 CrossRefPubMedGoogle Scholar
  9. 9.
    Rusakov DA (2015) Disentangling calcium-driven astrocyte physiology. Nat Rev Neurosci 16:226–233.  https://doi.org/10.1038/nrn3878 CrossRefPubMedGoogle Scholar
  10. 10.
    Verkhratsky A, Orkand RK, Kettenmann H (1998) Glial calcium: homeostasis and signaling function. Physiol Rev 78:99–141CrossRefPubMedGoogle Scholar
  11. 11.
    Verkhratsky A, Trebak M, Perocchi F, Khananshvili D, Sekler I (2018) Crosslink between calcium and sodium signalling. Exp Physiol 103:157–169.  https://doi.org/10.1113/EP086534 CrossRefPubMedGoogle Scholar
  12. 12.
    Wilson CS, Mongin AA (2018) The signaling role for chloride in the bidirectional communication between neurons and astrocytes. Neurosci Lett.  https://doi.org/10.1016/j.neulet.2018.01.012 CrossRefPubMedGoogle Scholar
  13. 13.
    Semyanov A (2019) Spatiotemporal pattern of calcium activity in astrocytic network. Cell Calcium 78:15–25CrossRefGoogle Scholar
  14. 14.
    Verkhratsky A, Kettenmann H (1996) Calcium signalling in glial cells. Trends Neurosci 19:346–352CrossRefPubMedGoogle Scholar
  15. 15.
    Deitmer JW, Verkhratsky AJ, Lohr C (1998) Calcium signalling in glial cells. Cell Calcium 24:405–416CrossRefPubMedGoogle Scholar
  16. 16.
    Verkhratsky A, Matteoli M, Parpura V, Mothet JP, Zorec R (2016) Astrocytes as secretory cells of the central nervous system: idiosyncrasies of vesicular secretion. EMBO J 35:239–257.  https://doi.org/10.15252/embj.201592705 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Zorec R, Parpura V, Verkhratsky A (2018) Astroglial vesicular network: evolutionary trends, physiology and pathophysiology. Acta Physiol (Oxf).  https://doi.org/10.1111/apha.12915 CrossRefGoogle Scholar
  18. 18.
    Vardjan N, Verkhratsky A, Zorec R (2015) Pathologic potential of astrocytic vesicle traffic: new targets to treat neurologic diseases? Cell Transplant 24:599–612.  https://doi.org/10.3727/096368915X687750 CrossRefPubMedGoogle Scholar
  19. 19.
    Ferrer I (2017) Diversity of astroglial responses across human neurodegenerative disorders and brain aging. Brain Pathol 27:645–674.  https://doi.org/10.1111/bpa.12538 CrossRefPubMedGoogle Scholar
  20. 20.
    Kovacs GG, Lee VM, Trojanowski JQ (2017) Protein astrogliopathies in human neurodegenerative diseases and aging. Brain Pathol 27:675–690.  https://doi.org/10.1111/bpa.12536 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Verkhratsky A, Rodriguez JJ, Steardo L (2014) Astrogliopathology: a central element of neuropsychiatric diseases? Neuroscientist 20:576–588.  https://doi.org/10.1177/1073858413510208 CrossRefPubMedGoogle Scholar
  22. 22.
    Verkhratsky A, Sofroniew MV, Messing A, deLanerolle NC, Rempe D, Rodriguez JJ, Nedergaard M (2012) Neurological diseases as primary gliopathies: a reassessment of neurocentrism. ASN Neuro.  https://doi.org/10.1042/AN20120010 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Verkhratsky A, Zorec R, Rodriguez JJ, Parpura V (2016) Astroglia dynamics in ageing and Alzheimer’s disease. Curr Opin Pharmacol 26:74–79.  https://doi.org/10.1016/j.coph.2015.09.011 CrossRefPubMedGoogle Scholar
  24. 24.
    Verkhratsky A, Olabarria M, Noristani HN, Yeh CY, Rodriguez JJ (2010) Astrocytes in Alzheimer’s disease. Neurotherapeutics 7:399–412.  https://doi.org/10.1016/j.nurt.2010.05.017 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Coombs JS, Eccles JC, Fatt P (1955) The electrical properties of the motoneurone membrane. J Physiol 130:291–325CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Martin AR, Branch CL (1958) Spontaneous activity of Betz cells in cats with midbrain lesions. J Neurophysiol 21:368–370.  https://doi.org/10.1152/jn.1958.21.4.368 CrossRefPubMedGoogle Scholar
  27. 27.
    Phillips CG (1956) Intracellular records from Betz cells in the cat. Q J Exp Physiol Cogn Med Sci 41:58–69PubMedGoogle Scholar
  28. 28.
    Krnjevic K, Schwartz S (1967) Some properties of unresponsive cells in the cerebral cortex. Exp Brain Res 3:306–319CrossRefPubMedGoogle Scholar
  29. 29.
    Hild W, Chang JJ, Tasaki I (1958) Electrical responses of astrocytic glia from the mammalian central nervous system cultivated in vitro. Experientia 14:220–221CrossRefPubMedGoogle Scholar
  30. 30.
    Hosli L, Andres PF, Hosli E (1979) Depolarization of cultured astrocytes by glutamate and aspartate. Neuroscience 4:1593–1598CrossRefPubMedGoogle Scholar
  31. 31.
    Hosli L, Hosli E, Andres PF, Landolt H (1981) Evidence that the depolarization of glial cells by inhibitory amino acids is caused by an efflux of K+ from neurones. Exp Brain Res 42:43–48CrossRefPubMedGoogle Scholar
  32. 32.
    Hertz L (1965) Possible role of neuroglia: a potassium-mediated neuronal–neuroglial–neuronal impulse transmission system. Nature 206:1091–1094CrossRefPubMedGoogle Scholar
  33. 33.
    Orkand RK, Nicholls JG, Kuffler SW (1966) Effect of nerve impulses on the membrane potential of glial cells in the central nervous system of amphibia. J Neurophysiol 29:788–806CrossRefPubMedGoogle Scholar
  34. 34.
    Kuffler SW (1967) Neuroglial cells: physiological properties and a potassium mediated effect of neuronal activity on the glial membrane potential. Proc R Soc Lond B Biol Sci 168:1–21CrossRefPubMedGoogle Scholar
  35. 35.
    Somjen GG (1975) Electrophysiology of neuroglia. Annu Rev Physiol 37:163–190.  https://doi.org/10.1146/annurev.ph.37.030175.001115 CrossRefPubMedGoogle Scholar
  36. 36.
    McCarthy KD, de Vellis J (1980) Preparation of separate astroglial and oligodendroglial cell cultures from rat cerebral tissue. J Cell Biol 85:890–902CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Bowman CL, Kimelberg HK (1984) Excitatory amino acids directly depolarize rat brain astrocytes in primary culture. Nature 311:656–659CrossRefPubMedGoogle Scholar
  38. 38.
    Kettenmann H, Backus KH, Schachner M (1984) Aspartate, glutamate and gamma-aminobutyric acid depolarize cultured astrocytes. Neurosci Lett 52:25–29CrossRefPubMedGoogle Scholar
  39. 39.
    Berger T (1995) AMPA-type glutamate receptors in glial precursor cells of the rat corpus callosum: ionic and pharmacological properties. Glia 14:101–114CrossRefPubMedGoogle Scholar
  40. 40.
    Condorelli DF et al (1999) Expression and functional analysis of glutamate receptors in glial cells. Adv Exp Med Biol 468:49–67CrossRefPubMedGoogle Scholar
  41. 41.
    Kettenmann H, Backus KH, Schachner M (1987) γ-Aminobutyric acid opens Cl channels in cultured astrocytes. Brain Res 404:1–9CrossRefPubMedGoogle Scholar
  42. 42.
    Kettenmann H, Schachner M (1985) Pharmacological properties of gamma-aminobutyric acid-, glutamate-, and aspartate-induced depolarizations in cultured astrocytes. J Neurosci 5:3295–3301CrossRefPubMedGoogle Scholar
  43. 43.
    Seifert G, Steinhauser C (1995) Glial cells in the mouse hippocampus express AMPA receptors with an intermediate Ca2+ permeability. Eur J Neurosci 7:1872–1881CrossRefPubMedGoogle Scholar
  44. 44.
    Steinhauser C, Jabs R, Kettenmann H (1994) Properties of GABA and glutamate responses in identified glial cells of the mouse hippocampal slice. Hippocampus 4:19–35CrossRefPubMedGoogle Scholar
  45. 45.
    Verkhratsky A, Steinhauser C (2000) Ion channels in glial cells. Brain Res Brain Res Rev 32:380–412CrossRefPubMedGoogle Scholar
  46. 46.
    Chvatal A, Pastor A, Mauch M, Sykova E, Kettenmann H (1995) Distinct populations of identified glial cells in the developing rat spinal cord slice: ion channel properties and cell morphology. Eur J Neurosci 7:129–142CrossRefPubMedGoogle Scholar
  47. 47.
    Finkbeiner SM (1993) Glial calcium. Glia 9:83–104.  https://doi.org/10.1002/glia.440090202 CrossRefPubMedGoogle Scholar
  48. 48.
    Kirischuk S, Tuschick S, Verkhratsky A, Kettenmann H (1996) Calcium signalling in mouse Bergmann glial cells mediated by α1-adrenoreceptors and H1 histamine receptors. Eur J Neurosci 8:1198–1208CrossRefPubMedGoogle Scholar
  49. 49.
    McCarthy KD, Salm AK (1991) Pharmacologically-distinct subsets of astroglia can be identified by their calcium response to neuroligands. Neuroscience 41:325–333CrossRefPubMedGoogle Scholar
  50. 50.
    Porter JT, McCarthy KD (1995) Adenosine receptors modulate [Ca2+]i in hippocampal astrocytes in situ. J Neurochem 65:1515–1523CrossRefPubMedGoogle Scholar
  51. 51.
    Kirischuk S, Moller T, Voitenko N, Kettenmann H, Verkhratsky A (1995) ATP-induced cytoplasmic calcium mobilization in Bergmann glial cells. J Neurosci 15:7861–7871CrossRefPubMedGoogle Scholar
  52. 52.
    Kastritsis CH, Salm AK, McCarthy K (1992) Stimulation of the P2Y purinergic receptor on type 1 astroglia results in inositol phosphate formation and calcium mobilization. J Neurochem 58:1277–1284CrossRefPubMedGoogle Scholar
  53. 53.
    Verkhratsky A, Rodriguez JJ, Parpura V (2012) Calcium signalling in astroglia. Mol Cell Endocrinol 353:45–56.  https://doi.org/10.1016/j.mce.2011.08.039 CrossRefPubMedGoogle Scholar
  54. 54.
    Kanemaru K, Kubota J, Sekiya H, Hirose K, Okubo Y, Iino M (2013) Calcium-dependent N-cadherin up-regulation mediates reactive astrogliosis and neuroprotection after brain injury. Proc Natl Acad Sci USA 110:11612–11617.  https://doi.org/10.1073/pnas.1300378110 CrossRefPubMedGoogle Scholar
  55. 55.
    Petravicz J, Boyt KM, McCarthy KD (2014) Astrocyte IP3R2-dependent Ca2+ signaling is not a major modulator of neuronal pathways governing behavior. Front Behav Neurosci 8:384.  https://doi.org/10.3389/fnbeh.2014.00384 CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Agulhon C, Fiacco TA, McCarthy KD (2010) Hippocampal short- and long-term plasticity are not modulated by astrocyte Ca2+ signaling. Science 327:1250–1254.  https://doi.org/10.1126/science.1184821 CrossRefPubMedGoogle Scholar
  57. 57.
    Verkhratsky A (2010) Physiology of neuronal-glial networking. Neurochem Int 57:332–343.  https://doi.org/10.1016/j.neuint.2010.02.002 CrossRefPubMedGoogle Scholar
  58. 58.
    Pastor A, Chvatal A, Sykova E, Kettenmann H (1995) Glycine- and GABA-activated currents in identified glial cells of the developing rat spinal cord slice. Eur J Neurosci 7:1188–1198CrossRefPubMedGoogle Scholar
  59. 59.
    Nedergaard M, Verkhratsky A (2012) Artifact versus reality—how astrocytes contribute to synaptic events. Glia 60:1013–1023.  https://doi.org/10.1002/glia.22288 CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Verkhratsky A, Nedergaard M (2014) Astroglial cradle in the life of the synapse. Philos Trans R Soc Lond B Biol Sci 369:20130595.  https://doi.org/10.1098/rstb.2013.0595 CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Mayer ML (2011) Structure and mechanism of glutamate receptor ion channel assembly, activation and modulation. Curr Opin Neurobiol 21:283–290.  https://doi.org/10.1016/j.conb.2011.02.001 CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Sudhof TC, Rizo J (2011) Synaptic vesicle exocytosis. Cold Spring Harb Perspect Biol.  https://doi.org/10.1101/cshperspect.a005637 CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Zhou Y, Danbolt NC (2013) GABA and glutamate transporters in brain. Front Endocrinol (Lausanne) 4:165.  https://doi.org/10.3389/fendo.2013.00165 CrossRefGoogle Scholar
  64. 64.
    Danbolt NC (2001) Glutamate uptake. Prog Neurobiol 65:1–105CrossRefPubMedGoogle Scholar
  65. 65.
    Hertz L, Dringen R, Schousboe A, Robinson SR (1999) Astrocytes: glutamate producers for neurons. J Neurosci Res 57:417–428CrossRefPubMedGoogle Scholar
  66. 66.
    Schousboe A, Scafidi S, Bak LK, Waagepetersen HS, McKenna MC (2014) Glutamate metabolism in the brain focusing on astrocytes. Adv Neurobiol 11:13–30.  https://doi.org/10.1007/978-3-319-08894-5_2 CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Lehre KP, Danbolt NC (1998) The number of glutamate transporter subtype molecules at glutamatergic synapses: chemical and stereological quantification in young adult rat brain. J Neurosci 18:8751–8757CrossRefPubMedGoogle Scholar
  68. 68.
    Rauen T, Rothstein JD, Wassle H (1996) Differential expression of three glutamate transporter subtypes in the rat retina. Cell Tissue Res 286:325–336CrossRefPubMedGoogle Scholar
  69. 69.
    Berger UV, Hediger MA (2000) Distribution of the glutamate transporters GLAST and GLT-1 in rat circumventricular organs, meninges, and dorsal root ganglia. J Comp Neurol 421:385–399CrossRefPubMedGoogle Scholar
  70. 70.
    Chaudhry FA, Lehre KP, van Lookeren Campagne M, Ottersen OP, Danbolt NC, Storm-Mathisen J (1995) Glutamate transporters in glial plasma membranes: highly differentiated localizations revealed by quantitative ultrastructural immunocytochemistry. Neuron 15:711–720CrossRefPubMedGoogle Scholar
  71. 71.
    Zerangue N, Kavanaugh MP (1996) Flux coupling in a neuronal glutamate transporter. Nature 383:634–637.  https://doi.org/10.1038/383634a0 CrossRefPubMedGoogle Scholar
  72. 72.
    Owe SG, Marcaggi P, Attwell D (2006) The ionic stoichiometry of the GLAST glutamate transporter in salamander retinal glia. J Physiol 577:591–599.  https://doi.org/10.1113/jphysiol.2006.116830 CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Vandenberg RJ, Huang S, Ryan RM (2008) Slips, leaks and channels in glutamate transporters. Channels (Austin) 2:51–58CrossRefGoogle Scholar
  74. 74.
    Kirischuk S, Kettenmann H, Verkhratsky A (2007) Membrane currents and cytoplasmic sodium transients generated by glutamate transport in Bergmann glial cells. Pflugers Arch 454:245–252.  https://doi.org/10.1007/s00424-007-0207-5 CrossRefPubMedGoogle Scholar
  75. 75.
    Herman MA, Jahr CE (2007) Extracellular glutamate concentration in hippocampal slice. J Neurosci 27:9736–9741.  https://doi.org/10.1523/JNEUROSCI.3009-07.2007 CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Bramham CR, Torp R, Zhang N, Storm-Mathisen J, Ottersen OP (1990) Distribution of glutamate-like immunoreactivity in excitatory hippocampal pathways: a semiquantitative electron microscopic study in rats. Neuroscience 39:405–417CrossRefPubMedGoogle Scholar
  77. 77.
    Otis TS, Kavanaugh MP (2000) Isolation of current components and partial reaction cycles in the glial glutamate transporter EAAT2. J Neurosci 20:2749–2757CrossRefPubMedGoogle Scholar
  78. 78.
    Shank RP, Bennett GS, Freytag SO, Campbell GL (1985) Pyruvate carboxylase: an astrocyte-specific enzyme implicated in the replenishment of amino acid neurotransmitter pools. Brain Res 329:364–367CrossRefPubMedGoogle Scholar
  79. 79.
    Norenberg MD, Martinez-Hernandez A (1979) Fine structural localization of glutamine synthetase in astrocytes of rat brain. Brain Res 161:303–310CrossRefPubMedGoogle Scholar
  80. 80.
    Rose CF, Verkhratsky A, Parpura V (2013) Astrocyte glutamine synthetase: pivotal in health and disease. Biochem Soc Trans 41:1518–1524.  https://doi.org/10.1042/BST20130237 CrossRefPubMedGoogle Scholar
  81. 81.
    Cooper AJ, Plum F (1987) Biochemistry and physiology of brain ammonia. Physiol Rev 67:440–519CrossRefPubMedGoogle Scholar
  82. 82.
    Marcaggi P, Jeanne M, Coles JA (2004) Neuron-glial trafficking of NH4 + and K+: separate routes of uptake into glial cells of bee retina. Eur J Neurosci 19:966–976CrossRefPubMedGoogle Scholar
  83. 83.
    Scalise M, Pochini L, Galluccio M, Indiveri C (2016) Glutamine transport. From energy supply to sensing and beyond. Biochim Biophys Acta.  https://doi.org/10.1016/j.bbabio.2016.03.006 CrossRefPubMedGoogle Scholar
  84. 84.
    Broer S (2014) The SLC38 family of sodium-amino acid co-transporters. Pflugers Arch 466:155–172.  https://doi.org/10.1007/s00424-013-1393-y CrossRefPubMedGoogle Scholar
  85. 85.
    Wolosker H, Balu DT, Coyle JT (2016) The rise and fall of the d-serine-mediated gliotransmission hypothesis. Trends Neurosci 39:712–721.  https://doi.org/10.1016/j.tins.2016.09.007 CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Ivanov AD, Mothet JP (2018) The plastic d-serine signaling pathway: sliding from neurons to glia and vice-versa. Neurosci Lett.  https://doi.org/10.1016/j.neulet.2018.05.039 CrossRefPubMedGoogle Scholar
  87. 87.
    Oca-Balderas PM, González-Hernández JR (2018) NMDA receptors in astroglia: chronology, controversies, and contradictions from a complex molecule. IntechOpen, RijekaGoogle Scholar
  88. 88.
    Verkhratsky A, Kirchhoff F (2007) NMDA receptors in glia. Neuroscientist 13:28–37 pii] 10.1177/1073858406294270 ) : doCrossRefPubMedGoogle Scholar
  89. 89.
    Butt A, Nedergaard M, Verkhratsky A (2018) Remembering Ben Barres. Neuroglia 1:4–6.  https://doi.org/10.3390/neuroglia1010002 CrossRefGoogle Scholar
  90. 90.
    Cahoy JD et al (2008) A transcriptome database for astrocytes, neurons, and oligodendrocytes: a new resource for understanding brain development and function. J Neurosci 28:264–278.  https://doi.org/10.1523/JNEUROSCI.4178-07.2008 CrossRefPubMedGoogle Scholar
  91. 91.
    Rusnakova V, Honsa P, Dzamba D, Stahlberg A, Kubista M, Anderova M (2013) Heterogeneity of astrocytes: from development to injury—single cell gene expression. PLoS ONE 8:e69734.  https://doi.org/10.1371/journal.pone.0069734 CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Lee MC, Ting KK, Adams S, Brew BJ, Chung R, Guillemin GJ (2010) Characterisation of the expression of NMDA receptors in human astrocytes. PLoS ONE 5:e14123.  https://doi.org/10.1371/journal.pone.0014123 CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Orre M et al (2014) Acute isolation and transcriptome characterization of cortical astrocytes and microglia from young and aged mice. Neurobiol Aging 35:1–14.  https://doi.org/10.1016/j.neurobiolaging.2013.07.008 CrossRefPubMedGoogle Scholar
  94. 94.
    Zhang Y et al (2014) An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. J Neurosci 34:11929–11947.  https://doi.org/10.1523/JNEUROSCI.1860-14.2014 CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Puro DG, Yuan JP, Sucher NJ (1996) Activation of NMDA receptor-channels in human retinal Muller glial cells inhibits inward-rectifying potassium currents. Vis Neurosci 13:319–326CrossRefPubMedGoogle Scholar
  96. 96.
    Lopez T, Lopez-Colome AM, Ortega A (1997) NMDA receptors in cultured radial glia. FEBS Lett 405:245–248CrossRefPubMedGoogle Scholar
  97. 97.
    Gracy KN, Pickel VM (1995) Comparative ultrastructural localization of the NMDAR1 glutamate receptor in the rat basolateral amygdala and bed nucleus of the stria terminalis. J Comp Neurol 362:71–85.  https://doi.org/10.1002/cne.903620105 CrossRefPubMedGoogle Scholar
  98. 98.
    Conti F, DeBiasi S, Minelli A, Melone M (1996) Expression of NR1 and NR2A/B subunits of the NMDA receptor in cortical astrocytes. Glia 17:254–258  https://doi.org/10.1002/(SICI)1098-1136(199607)17:3%3C254::AID-GLIA7%3E3.0.CO;2-0 CrossRefPubMedGoogle Scholar
  99. 99.
    Conti F, Barbaresi P, Melone M, Ducati A (1999) Neuronal and glial localization of NR1 and NR2A/B subunits of the NMDA receptor in the human cerebral cortex. Cereb Cortex 9:110–120CrossRefPubMedGoogle Scholar
  100. 100.
    Petralia RS, Wang YX, Zhao HM, Wenthold RJ (1996) Ionotropic and metabotropic glutamate receptors show unique postsynaptic, presynaptic, and glial localizations in the dorsal cochlear nucleus. J Comp Neurol 372:356–383  https://doi.org/10.1002/(SICI)1096-9861(19960826)372:3%3C356::AID-CNE3%3E3.0.CO;2-1 CrossRefPubMedGoogle Scholar
  101. 101.
    Van Bockstaele EJ, Colago EE (1996) Selective distribution of the NMDA-R1 glutamate receptor in astrocytes and presynaptic axon terminals in the nucleus locus coeruleus of the rat brain: an immunoelectron microscopic study. J Comp Neurol 369:483–496  https://doi.org/10.1002/(SICI)1096-9861(19960610)369:4%3C483::AID-CNE1%3E3.0.CO;2-0 CrossRefPubMedGoogle Scholar
  102. 102.
    Farb CR, Aoki C, Ledoux JE (1995) Differential localization of NMDA and AMPA receptor subunits in the lateral and basal nuclei of the amygdala: a light and electron microscopic study. J Comp Neurol 362:86–108.  https://doi.org/10.1002/cne.903620106 CrossRefPubMedGoogle Scholar
  103. 103.
    Ravikrishnan A, Gandhi PJ, Shelkar GP, Liu J, Pavuluri R, Dravid SM (2018) Region-specific expression of NMDA receptor GluN2C subunit in parvalbumin-positive neurons and astrocytes: analysis of GluN2C expression using a novel reporter model. Neuroscience 380:49–62.  https://doi.org/10.1016/j.neuroscience.2018.03.011 CrossRefPubMedGoogle Scholar
  104. 104.
    Nishizaki T, Matsuoka T, Nomura T, Kondoh T, Tamaki N, Okada Y (1999) Store Ca2+ depletion enhances NMDA responses in cultured human astrocytes. Biochem Biophys Res Commun 259:661–664CrossRefPubMedGoogle Scholar
  105. 105.
    Kondoh T, Nishizaki T, Aihara H, Tamaki N (2001) NMDA-responsible, APV-insensitive receptor in cultured human astrocytes. Life Sci 68:1761–1767CrossRefPubMedGoogle Scholar
  106. 106.
    Zhang Q, Hu B, Sun S, Tong EMS (2003) Induction of increased intracellular calcium in astrocytes by glutamate through activating NMDA and AMPA receptors. J Huazhong Univ Sci Technol 23:254–257CrossRefGoogle Scholar
  107. 107.
    Hu B, Sun SG, Tong ET (2004) NMDA and AMPA receptors mediate intracellular calcium increase in rat cortical astrocytes. Acta Pharmacol Sin 25:714–720PubMedGoogle Scholar
  108. 108.
    Porter JT, McCarthy KD (1995) GFAP-positive hippocampal astrocytes in situ respond to glutamatergic neuroligands with increases in [Ca2+]i. Glia 13:101–112.  https://doi.org/10.1002/glia.440130204 CrossRefPubMedGoogle Scholar
  109. 109.
    Ziak D, Chvatal A, Sykova E (1998) Glutamate-, kainate- and NMDA-evoked membrane currents in identified glial cells in rat spinal cord slice. Physiol Res 47:365–375PubMedGoogle Scholar
  110. 110.
    Schipke CG, Ohlemeyer C, Matyash M, Nolte C, Kettenmann H, Kirchhoff F (2001) Astrocytes of the mouse neocortex express functional N-methyl-d-aspartate receptors. Faseb J 15:1270–1272CrossRefPubMedGoogle Scholar
  111. 111.
    Lalo U, Pankratov Y, Kirchhoff F, North RA, Verkhratsky A (2006) NMDA receptors mediate neuron-to-glia signaling in mouse cortical astrocytes. J Neurosci 26:2673–2683CrossRefPubMedGoogle Scholar
  112. 112.
    Kirchhoff F (2017) Analysis of functional NMDA receptors in astrocytes. Methods Mol Biol 1677:241–251.  https://doi.org/10.1007/978-1-4939-7321-7_13 CrossRefPubMedGoogle Scholar
  113. 113.
    Palygin O, Lalo U, Pankratov Y (2011) Distinct pharmacological and functional properties of NMDA receptors in mouse cortical astrocytes. Br J Pharmacol 163:1755–1766.  https://doi.org/10.1111/j.1476-5381.2011.01374.x CrossRefPubMedPubMedCentralGoogle Scholar
  114. 114.
    Palygin O, Lalo U, Verkhratsky A, Pankratov Y (2010) Ionotropic NMDA and P2X1/5 receptors mediate synaptically induced Ca2+ signalling in cortical astrocytes. Cell Calcium 48:225–231.  https://doi.org/10.1016/j.ceca.2010.09.004 CrossRefPubMedGoogle Scholar
  115. 115.
    Lalo U, Palygin O, North RA, Verkhratsky A, Pankratov Y (2011) Age-dependent remodelling of ionotropic signalling in cortical astroglia. Aging Cell 10:392–402.  https://doi.org/10.1111/j.1474-9726.2011.00682.x CrossRefPubMedGoogle Scholar
  116. 116.
    Cai Z, Kimelberg HK (1997) Glutamate receptor-mediated calcium responses in acutely isolated hippocampal astrocytes. Glia 21:380–389CrossRefPubMedGoogle Scholar
  117. 117.
    Shelton MK, McCarthy KD (1999) Mature hippocampal astrocytes exhibit functional metabotropic and ionotropic glutamate receptors in situ. Glia 26:1–11CrossRefPubMedGoogle Scholar
  118. 118.
    Letellier M, Park YK, Chater TE, Chipman PH, Gautam SG, Oshima-Takago T, Goda Y (2016) Astrocytes regulate heterogeneity of presynaptic strengths in hippocampal networks. Proc Natl Acad Sci USA 113:E2685–E2694.  https://doi.org/10.1073/pnas.1523717113 CrossRefPubMedGoogle Scholar
  119. 119.
    Shih PY et al (2013) Retrograde synaptic signaling mediated by K+ efflux through postsynaptic NMDA receptors. Cell Rep 5:941–951.  https://doi.org/10.1016/j.celrep.2013.10.026 CrossRefPubMedGoogle Scholar
  120. 120.
    Pankratov Y, Lalo U, Krishtal OA, Verkhratsky A (2009) P2X receptors and synaptic plasticity. Neuroscience 158:137–148.  https://doi.org/10.1016/j.neuroscience.2008.03.076 CrossRefPubMedGoogle Scholar
  121. 121.
    Chatterton JE et al (2002) Excitatory glycine receptors containing the NR3 family of NMDA receptor subunits. Nature 415:793–798.  https://doi.org/10.1038/nature715 CrossRefPubMedGoogle Scholar
  122. 122.
    Tong G et al (2008) Modulation of NMDA receptor properties and synaptic transmission by the NR3A subunit in mouse hippocampal and cerebrocortical neurons. J Neurophysiol 99:122–132.  https://doi.org/10.1152/jn.01044.2006 CrossRefPubMedGoogle Scholar
  123. 123.
    Lalo U, Pankratov Y, Parpura V, Verkhratsky A (2011) Ionotropic receptors in neuronal-astroglial signalling: what is the role of “excitable” molecules in non-excitable cells. Biochim Biophys Acta 1813:992–1002.  https://doi.org/10.1016/j.bbamcr.2010.09.007 CrossRefPubMedGoogle Scholar
  124. 124.
    Maneshi MM, Maki B, Gnanasambandam R, Belin S, Popescu GK, Sachs F, Hua SZ (2017) Mechanical stress activates NMDA receptors in the absence of agonists. Sci Rep 7:39610.  https://doi.org/10.1038/srep39610 CrossRefPubMedPubMedCentralGoogle Scholar
  125. 125.
    Gerard F, Hansson E (2012) Inflammatory activation enhances NMDA-triggered Ca2+ signalling and IL-1beta secretion in primary cultures of rat astrocytes. Brain Res 1473:1–8.  https://doi.org/10.1016/j.brainres.2012.07.032 CrossRefPubMedGoogle Scholar
  126. 126.
    Montes de Oca Balderas P, Aguilera P (2015) A metabotropic-like flux-independent NMDA receptor regulates Ca2+ exit from endoplasmic reticulum and mitochondrial membrane potential in cultured astrocytes. PLoS ONE 10:e0126314.  https://doi.org/10.1371/journal.pone.0126314 CrossRefPubMedPubMedCentralGoogle Scholar
  127. 127.
    Jimenez-Blasco D, Santofimia-Castano P, Gonzalez A, Almeida A, Bolanos JP (2015) Astrocyte NMDA receptors’ activity sustains neuronal survival through a Cdk5-Nrf2 pathway. Cell Death Differ 22:1877–1889.  https://doi.org/10.1038/cdd.2015.49 CrossRefPubMedPubMedCentralGoogle Scholar
  128. 128.
    Suhs KW, Gudi V, Eckermann N, Fairless R, Pul R, Skripuletz T, Stangel M (2016) Cytokine regulation by modulation of the NMDA receptor on astrocytes. Neurosci Lett 629:227–233.  https://doi.org/10.1016/j.neulet.2016.07.016 CrossRefPubMedGoogle Scholar
  129. 129.
    Verkhratsky A, Parpura V (2016) Astrogliopathology in neurological, neurodevelopmental and psychiatric disorders. Neurobiol Dis 85:254–261.  https://doi.org/10.1016/j.nbd.2015.03.025 CrossRefPubMedGoogle Scholar
  130. 130.
    Verkhratsky A, Steardo L, Parpura V, Montana V (2016) Translational potential of astrocytes in brain disorders. Prog Neurobiol 144:188–205.  https://doi.org/10.1016/j.pneurobio.2015.09.003 CrossRefPubMedGoogle Scholar
  131. 131.
    Gottlieb M, Matute C (1997) Expression of ionotropic glutamate receptor subunits in glial cells of the hippocampal CA1 area following transient forebrain ischemia. J Cereb Blood Flow Metab 17:290–300.  https://doi.org/10.1097/00004647-199703000-00006 CrossRefPubMedGoogle Scholar
  132. 132.
    Krebs C, Fernandes HB, Sheldon C, Raymond LA, Baimbridge KG (2003) Functional NMDA receptor subtype 2B is expressed in astrocytes after ischemia in vivo and anoxia in vitro. J Neurosci 23:3364–3372CrossRefPubMedGoogle Scholar
  133. 133.
    Zhou Y et al (2010) Astrocytes express N-methyl-d-aspartate receptor subunits in development, ischemia and post-ischemia. Neurochem Res 35:2124–2134.  https://doi.org/10.1007/s11064-010-0325-x CrossRefPubMedGoogle Scholar
  134. 134.
    Obara-Michlewska M, Ruszkiewicz J, Zielinska M, Verkhratsky A, Albrecht J (2015) Astroglial NMDA receptors inhibit expression of Kir4.1 channels in glutamate-overexposed astrocytes in vitro and in the brain of rats with acute liver failure. Neurochem Int 88:20–25.  https://doi.org/10.1016/j.neuint.2014.10.006 CrossRefPubMedGoogle Scholar
  135. 135.
    Skowronska K, Obara-Michlewska M, Czarnecka A, Dabrowska K, Zielinska M, Albrecht J (2018) Persistent Overexposure to N-methyl-d-aspartate (NMDA) calcium-dependently downregulates glutamine synthetase, aquaporin 4, and Kir4.1 channel in mouse cortical astrocytes. Neurotox Res.  https://doi.org/10.1007/s12640-018-9958-3 CrossRefPubMedPubMedCentralGoogle Scholar
  136. 136.
    Obara-Michlewska M, Tuszynska P, Albrecht J (2013) Ammonia upregulates kynurenine aminotransferase II mRNA expression in rat brain: a role for astrocytic NMDA receptors? Metab Brain Dis 28:161–165.  https://doi.org/10.1007/s11011-012-9353-3 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Faculty of Biology, Medicine and HealthThe University of ManchesterManchesterUK
  2. 2.Achucarro Center for NeuroscienceIKERBASQUE, Basque Foundation for ScienceBilbaoSpain
  3. 3.Center for Basic and Translational Neuroscience, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
  4. 4.LBCC Healthcare s.r.oPragueCzech Republic
  5. 5.Institute of Pharmacology and Toxicology, Faculty of Medicine in PilsenCharles UniversityPilsenCzech Republic

Personalised recommendations