Advertisement

Modulating P1 Adenosine Receptors in Disease Progression of SOD1G93A Mutant Mice

  • Monica Armida
  • Alessandra Matteucci
  • Antonella Pèzzola
  • Younis Baqi
  • Christa E. Müller
  • Patrizia Popoli
  • Rosa Luisa PotenzaEmail author
Brief Communication

Abstract

Amyotrophic lateral sclerosis (ALS) is a fatal progressing neurodegenerative disease; to date, despite the intense research effort, only two therapeutic options, with very limited effects, are available. The purinergic system has been indicated as a possible new therapeutic target for ALS, but the results are often contradictory and generally confused. The present study was designed to determine whether P1 adenosine receptor ligands affected disease progression in a transgenic model of ALS. SOD1G93A mice were chronically treated, from presymptomatic stage, with a selective adenosine A2A receptor agonist (CGS21680), antagonist (KW6002) or the A1 receptor antagonist DPCPX. Body weight, motor performance and survival time were evaluated. The results showed that neither the stimulation nor the blockade of adenosine A2A receptors modified the progressive loss of motor skills or survival of mSOD1G93A mice. Conversely, blockade of adenosine A1 receptors from the presymptomatic stage significantly attenuated motor disease progression and induced a non-significant increase of median survival in ALS mice. Our data confirm that the modulation of adenosine receptors can elicit very different (and even opposite) effects during the progression of ALS course, thus strengthens the importance of further studies to elucidated their real therapeutic potential in this pathology.

Keywords

Adenosine A2A receptors (A2ARs) Adenosine A1 receptors (A1Rs) Amyotrophic lateral sclerosis (ALS) SOD1G93A mice 

Notes

Author Contributions

All co-authors have seen and agree with the contents of the manuscript.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Approval

All procedures performed in studies involving animals were in accordance with the ethical standards of the institution and approved by the Italian Ministry of Health (Decree 118/2014B).

References

  1. 1.
    Beghi E, Pupillo E, Messina P, Giussani G, Chiò A, Zoccolella S et al (2011) Coffee and amyotrophic lateral sclerosis: a possible preventive role. Am J Epidemiol 174:1002–1008CrossRefGoogle Scholar
  2. 2.
    Fondell E, O’Reilly ÉI, Fitzgerald KC, Falcone GJ, Kolonel LN, Park Y et al (2015) Intakes of caffeine, coffee and tea and risk of amyotrophic lateral sclerosis: Results from five cohort studies. Amyotroph Lateral Scler Frontotemporal Degener 16(5–6):366–371CrossRefGoogle Scholar
  3. 3.
    Pupillo E, Bianchi E, Chiò A, Casale F, Zecca C, Tortelli R et al (2018) Amyotrophic lateral sclerosis and food intake. Amyotroph Lateral Scler Frontotemporal Degener 19(3–4):267–274CrossRefGoogle Scholar
  4. 4.
    Potenza RL, Armida M, Ferrante A, Pèzzola A, Matteucci A, Puopolo M, Popoli P (2013) Effects of chronic caffeine intake in a mouse model of amyotrophic lateral sclerosis. J Neurosci Res 91(4):585–592CrossRefGoogle Scholar
  5. 5.
    Yanpallewar SU, Barrick CA, Buckley H, Becker J, Tessarollo L (2012) Deletion of the BDNF truncated receptor TrkB.T1 delays disease onset in a mouse model of amyotrophic lateral sclerosis. PLoS ONE 7:e39946CrossRefGoogle Scholar
  6. 6.
    Ng SK, Higashimori H, Tolman M, Yang Y (2015) Suppression of adenosine 2a receptor (A2aR)-mediated adenosine signaling improves disease phenotypes in a mouse model of amyotrophic lateral sclerosis. Exp Neurol 267:115–122CrossRefGoogle Scholar
  7. 7.
    Nascimento F, Sebastião AM, Ribeiro JA (2015) Presymptomatic and symptomatic ALS SOD1 (G93A) mice differ in adenosine A1 and A2A receptor-mediated tonic modulation of neuromuscular transmission. Purinergic Signal 11(4):471–480CrossRefGoogle Scholar
  8. 8.
    Martire A, Calamandrei G, Felici F, Scattoni ML, Lastoria G, Domenici MR, Tebano MT, Popoli P (2007) Opposite effects of the A2A receptor agonist CGS21680 in the striatum of Huntington’s disease versus wild-type mice. Neurosci Lett 417(1):78–83CrossRefGoogle Scholar
  9. 9.
    Ferrante A, Martire A, Armida M, Chiodi V, Pézzola A, Potenza RL, Domenici MR, Popoli P (2010) Influence of CGS 21680, a selective adenosine A(2A) receptor agonist, on NMDA receptor function and expression in the brain of Huntington’s disease mice. Brain Res 1323:184–191CrossRefGoogle Scholar
  10. 10.
    Chou SY, Lee YC, Chen HM, Chiang MC, Lai HL, Chang HH, Wu YC, Sun CN, Chien CL, Lin YS, Wang SC, Tung YY, Chang C, Chern Y (2005) CGS21680 attenuates symptoms of Huntington’s disease in a transgenic mouse model. J Neurochem 93(2):310–320CrossRefGoogle Scholar
  11. 11.
    Hockemeyer J, Burbiel JC, Müller CE (2004) Multigram-scale syntheses, stability, and photoreactions of A2A adenosine receptor antagonists with 8-styrylxanthine structure: potential drugs for Parkinson’s disease. J Org Chem 69(10):3308–3318CrossRefGoogle Scholar
  12. 12.
    Ludolph AC, Bendotti C, Blaugrund E et al (2010) Guidelines for preclinical animal research in ALS/MND: a consensus meeting. Amyotroph Lateral Scler 11:38–45CrossRefGoogle Scholar
  13. 13.
    Nagel J, Schladebach H, Koch M, Schwienbacher I, Müller CE, Hauber W (2003) Effects of an adenosine A2A receptor blockade in the nucleus accumbens on locomotion, feeding, and prepulse inhibition in rats. Synapse 49(4):279–286CrossRefGoogle Scholar
  14. 14.
    Mingote S, Pereira M, Farrar AM, McLaughlin PJ, Salamone JD (2008) Systemic administration of the adenosine A(2A) agonist CGS 21680 induces sedation at doses that suppress lever pressing and food intake. Pharmacol Biochem Behav 89:345–351CrossRefGoogle Scholar
  15. 15.
    Gnad T, Scheibler S, von Kügelgen I, Scheele C, Kilić A, Glöde A, Hoffmann LS, Reverte-Salisa L, Horn P, Mutlu S, El-Tayeb A, Kranz M, Deuther-Conrad W, Brust P, Lidell ME, Betz MJ, Enerbäck S, Ju¨rgen Schrader J, Yegutkin GG, Müller CE, Pfeifer A (2014) Adenosine activates brown adipose tissue and recruits beige adipocytes via A2A receptors. Nature 516(7531):395–399CrossRefGoogle Scholar
  16. 16.
    DeOliveira CC, Paiva Caria CR, Ferreira Gotardo EM, Ribeiro ML, Gambero A (2017) Role of A1 and A2A adenosine receptor agonists in adipose tissue inflammation induced by obesity in mice. Eur J Pharmacol 799:154–159CrossRefGoogle Scholar
  17. 17.
    Klaasse EC, Ljzerman AP, de Grip WJ, Beukers MW (2008) Internalization and desensitization of adenosine receptors. Purinergic Signal 4(1):21–37CrossRefGoogle Scholar
  18. 18.
    Vincenzi F, Corciulo C, Targa M, Casetta I, Gentile M, Granieri E, Borea PA, Popoli P, Varani K (2013) A2A adenosine receptors are up-regulated in lymphocytes from amyotrophic lateral sclerosis patients. Amyotroph Lateral Scler Frontotemporal Degener 14(5–6):406–413CrossRefGoogle Scholar
  19. 19.
    Chen JF, Sonsalla PK, Pedata F, Melani A, Domenici MR, Popoli P, Geiger J, Lopes LV, de Mendonça A (2007) Adenosine A2A receptors and brain injury: broad spectrum of neuroprotection, multifaceted actions and “fine tuning” modulation. Prog Neurobiol 83(5):310–331CrossRefGoogle Scholar
  20. 20.
    Popoli P, Blum D, Martire A, Ledent C, Ceruti S, Abbracchio MP (2007) Functions, dysfunctions and possible therapeutic relevance of adenosine A2A receptors in Huntington’s disease. Prog Neurobiol 81(5–6):331–348CrossRefGoogle Scholar
  21. 21.
    Popoli P (2008) Regulation of brain functions by A2A receptors: implication for therapeutics. Curr Pharm Des 14(15):1466–1467CrossRefGoogle Scholar
  22. 22.
    Laurent C, Burnouf S, Ferry B, Batalha VL, Coelho JE, Baqi Y, Malik E, Mariciniak E, Parrot S, Van der Jeugd A, Faivre E, Flaten V, Ledent C, D’Hooge R, Sergeant N, Hamdane M, Humez S, Müller CE, Lopes LV, Buée L, Blum D (2016) A2A adenosine receptor deletion is protective in a mouse model of Tauopathy. Mol Psychiatry 21(1):97–107CrossRefGoogle Scholar
  23. 23.
    Nascimento F, Pousinha PA, Correia AM, Gomes R, Sebastião AM, Ribeiro JA (2014) Adenosine A2A receptors activation facilitates neuromuscular transmission in the pre-symptomatic phase of the SOD1 (G93A) ALS mice, but not in the symptomatic phase. PLoS ONE 9(8):e104081CrossRefGoogle Scholar
  24. 24.
    Sebastião AM, Rei N, Ribeiro JA (2018) Amyotrophic lateral sclerosis (ALS) and adenosine receptors. Front Pharmacol 9:267CrossRefGoogle Scholar
  25. 25.
    Pedata F, Dettori I, Coppi E, Melani A, Fusco I, Corradetti R, Pugliese AM (2016) Purinergic signalling in brain ischemia. Neuropharmacology 104:105–130CrossRefGoogle Scholar
  26. 26.
    Popoli P, Minghetti L, Tebano MT, Pintor A, Domenici MR, Massotti M (2004) Adenosine A2A receptor antagonism and neuroprotection: mechanisms, lights, and shadows. Crit Rev Neurobiol 16(1–2):99–106CrossRefGoogle Scholar
  27. 27.
    Conlay LA, Conant JA, deBros F, Wurtman R (1997) Caffeine alters plasma adenosine levels. Nature 389(6647):136CrossRefGoogle Scholar
  28. 28.
    Ciruela F, Casadó V, Rodrigues RJ, Luján R, Burgueño J, Canals M, Borycz J, Rebola N, Goldberg SR, Mallol J, Cortés A, Canela EI, López-Giménez JF, Milligan G, Lluis C, Cunha RA, Ferré S, Franco R (2006) Presynaptic control of striatal glutamatergic neurotransmission by adenosine A1-A2A receptor heteromers. J Neurosci 26(7):2080–2087CrossRefGoogle Scholar
  29. 29.
    Ferré S, Ciruela F, Borycz J, Solinas M, Quarta D, Antoniou K, Quiroz C, Justinova Z, Lluis C, Franco R, Goldberg SR (2008) Adenosine A1-A2 receptor heteromers: new targets for caffeine in the brain. Front Biosci 13:2391–2399CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.National Center for Drug Research and EvaluationIstituto Superiore di SanitàRomeItaly
  2. 2.Department of Chemistry, Faculty of ScienceSultan Qaboos UniversityMuscatOman
  3. 3.PharmaCenter Bonn, Pharmazeutische Chemie I, Pharmazeutisches InstitutUniversity of BonnBonnGermany

Personalised recommendations