Advertisement

Neurochemical Research

, Volume 44, Issue 4, pp 947–958 | Cite as

Dopamine Alters Lipopolysaccharide-Induced Nitric Oxide Production in Microglial Cells via Activation of D1-Like Receptors

  • Biao Wang
  • Teng Chen
  • Guodong Li
  • Yuwei Jia
  • Jing Wang
  • Li Xue
  • Yanjiong ChenEmail author
Original Paper

Abstract

Dopamine (DA) is important in the maintenance of normal nervous system function. DA is the target of multiple drugs, and it induces critical alterations in immune cells. However, these impacts are controversial, and the mechanism remains unclear. In the present study, we treated BV-2 microglial cells and primary microglia with DA and measured the changes in cytokines. We also identified the expression of DA receptors (DRs) using confocal and immunofluorescent microscopy. Specific agonists and antagonists of D1-like DRs (D1DR and D5DR) were used to observe alterations in cytokines. Western blot and siRNA interference were performed to investigate the involvement of the downstream signaling molecules of DRs. We also measured changes in mitogen-activated protein kinases (MAPKs) and the nuclear factor-kappa B (NF-κB) signaling pathway and assessed their involvement using inhibitors. We found that DA alone produced no effects on IL-6, TNF-α or nitric oxide (NO) production, and it inhibited lipopolysaccharide (LPS)-induced NO in microglial cells. Microglia expressed a high abundance of D1-like DRs (D1DR and D5DR). The agonists inhibited NO production, and antagonists reversed the DA-induced suppression of NO. Adenylatec cyclase (AC), cyclic adenosine monophosphate (cAMP) and protein kinase A (PKA) mediated DA function, and cAMP-response element binding protein (CREB) was not involved. ERK1/2 and NF-κB, but not p-38 or JNK, played roles in DA-suppressed NO generation via altering inducible nitric oxide synthase (iNOS) transcription. These data illustrate that DA modulates LPS-induced NO production via the AC/cAMP-PKA-ERK1/2-NF-κB-iNOS axis in mouse microglia, and D1-like DRs are involved. The present study provides functional evidence for an essential role of DA in immunoregulation.

Keywords

Dopamine Dopamine receptors Nitric oxide iNOS NF-κB 

Notes

Acknowledgements

The authors thank Drs. Wu Feng and Ren Huixun in the Department of Immunology and Pathogenic Biology of Xi’an Jiaotong University for the great help in the modification of the manuscript.

Funding

This work was supported by the National Natural Science Foundation of China (Grant Numbers: 81273196, 81430048, 81772034).

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interests.

Ethics Approval and Consent to Participate

All protocols were approved by the Ethics Committee of Xi’an Jiaotong University.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Supplementary material

11064_2019_2730_MOESM1_ESM.docx (1.5 mb)
Supplementary material 1 (DOCX 1579 KB)

References

  1. 1.
    Romanov RA, Zeisel A, Bakker J, Girach F, Hellysaz A, Tomer R, Alpar A, Mulder J, Clotman F, Keimpema E, Hsueh B, Crow AK, Martens H, Schwindling C, Calvigioni D, Bains JS, Mate Z, Szabo G, Yanagawa Y, Zhang MD, Rendeiro A, Farlik M, Uhlen M, Wulff P, Bock C, Broberger C, Deisseroth K, Hokfelt T, Linnarsson S, Horvath TL, Harkany T (2017) Molecular interrogation of hypothalamic organization reveals distinct dopamine neuronal subtypes. Nat Neurosci 20(2):176–188.  https://doi.org/10.1038/nn.4462 CrossRefPubMedGoogle Scholar
  2. 2.
    Milienne-Petiot M, Groenink L, Minassian A, Young JW (2017) Blockade of dopamine D1-family receptors attenuates the mania-like hyperactive, risk-preferring, and high motivation behavioral profile of mice with low dopamine transporter levels. J Psychopharmacol (Oxford England) 31(10):1334–1346.  https://doi.org/10.1177/0269881117731162 CrossRefGoogle Scholar
  3. 3.
    Torres-Rosas R, Yehia G, Pena G, Mishra P, del Rocio Thompson-Bonilla M, Moreno-Eutimio MA, Arriaga-Pizano LA, Isibasi A, Ulloa L (2014) Dopamine mediates vagal modulation of the immune system by electroacupuncture. Nat Med 20(3):291–295.  https://doi.org/10.1038/nm.3479 CrossRefPubMedCentralPubMedGoogle Scholar
  4. 4.
    Miyagi J, Oshibuchi H, Kasai A, Inada K, Ishigooka J (2014) Valproic acid inhibits excess dopamine release in response to a fear-conditioned stimulus in the basolateral complex of the amygdala of methamphetamine-sensitized rats. Eur J Pharmacol 730:20–25.  https://doi.org/10.1016/j.ejphar.2014.01.020 CrossRefPubMedGoogle Scholar
  5. 5.
    Rangel-Barajas C, Coronel I, Floran B (2015) Dopamine receptors and neurodegeneration. Aging Dis 6(5):349–368.  https://doi.org/10.14336/ad.2015.0330 CrossRefPubMedCentralPubMedGoogle Scholar
  6. 6.
    Jiang S, Gao H, Luo Q, Wang P, Yang X (2017) The correlation of lymphocyte subsets, natural killer cell, and Parkinson’s disease: a meta-analysis. Neurol Sci 38(8):1373–1380.  https://doi.org/10.1007/s10072-017-2988-4 CrossRefPubMedGoogle Scholar
  7. 7.
    Mikulak J, Bozzo L, Roberto A, Pontarini E, Tentorio P, Hudspeth K, Lugli E, Mavilio D (2014) Dopamine inhibits the effector functions of activated NK cells via the upregulation of the D5 receptor. J Immunol 193(6):2792–2800.  https://doi.org/10.4049/jimmunol.1401114 CrossRefPubMedGoogle Scholar
  8. 8.
    Cosentino M, Ferrari M, Kustrimovic N, Rasini E, Marino F (2015) Influence of dopamine receptor gene polymorphisms on circulating T lymphocytes: a pilot study in healthy subjects. Hum Immunol 76(10):747–752.  https://doi.org/10.1016/j.humimm.2015.09.032 CrossRefPubMedGoogle Scholar
  9. 9.
    Saha B, Mondal AC, Basu S, Dasgupta PS (2001) Circulating dopamine level, in lung carcinoma patients, inhibits proliferation and cytotoxicity of CD4+ and CD8+ T cells by D1 dopamine receptors: an in vitro analysis. Int Immunopharmacol 1(7):1363–1374CrossRefPubMedGoogle Scholar
  10. 10.
    Menassa DA, Gomez-Nicola D (2018) Microglial dynamics during human brain development. Front Immunol 9:1014.  https://doi.org/10.3389/fimmu.2018.01014 CrossRefPubMedCentralPubMedGoogle Scholar
  11. 11.
    Xie F, Zhang F, Min S, Chen J, Yang J, Wang X (2018) Glial cell line-derived neurotrophic factor (GDNF) attenuates the peripheral neuromuscular dysfunction without inhibiting the activation of spinal microglia/monocyte. BMC Geriatr 18(1):110.  https://doi.org/10.1186/s12877-018-0796-1 CrossRefPubMedCentralPubMedGoogle Scholar
  12. 12.
    Wyss-Coray T, Rogers J (2012) Inflammation in Alzheimer disease-a brief review of the basic science and clinical literature. Cold Spring Harb Perspect Med 2(1):a006346.  https://doi.org/10.1101/cshperspect.a006346 CrossRefPubMedCentralPubMedGoogle Scholar
  13. 13.
    Biber K, Owens T, Boddeke E (2014) What is microglia neurotoxicity (Not)? Glia 62(6):841–854.  https://doi.org/10.1002/glia.22654 CrossRefPubMedGoogle Scholar
  14. 14.
    Zhu C, Kros JM, van der Weiden M, Zheng P, Cheng C, Mustafa DA (2017) Expression site of P2RY12 in residential microglial cells in astrocytomas correlates with M1 and M2 marker expression and tumor grade. Acta neuropathol Commun 5(1):4.  https://doi.org/10.1186/s40478-016-0405-5 CrossRefPubMedCentralPubMedGoogle Scholar
  15. 15.
    Sasaki A (2017) Microglia and brain macrophages: an update. Neuropathology 37(5):452–464.  https://doi.org/10.1111/neup.12354 CrossRefPubMedGoogle Scholar
  16. 16.
    Farber K, Pannasch U, Kettenmann H (2005) Dopamine and noradrenaline control distinct functions in rodent microglial cells. Mol Cell Neurosci 29(1):128–138.  https://doi.org/10.1016/j.mcn.2005.01.003 CrossRefPubMedGoogle Scholar
  17. 17.
    Yoshioka Y, Sugino Y, Tozawa A, Yamamuro A, Kasai A, Ishimaru Y, Maeda S (2016) Dopamine inhibits lipopolysaccharide-induced nitric oxide production through the formation of dopamine quinone in murine microglia BV-2 cells. J Pharmacol Sci 130(2):51–59.  https://doi.org/10.1016/j.jphs.2015.11.002 CrossRefPubMedGoogle Scholar
  18. 18.
    Wang B, Chen T, Wang J, Jia Y, Ren H, Wu F, Hu M, Chen Y (2018) Methamphetamine modulates the production of interleukin-6 and tumor necrosis factor-alpha via the cAMP/PKA/CREB signaling pathway in lipopolysaccharide-activated microglia. Int Immunopharmacol 56:168–178.  https://doi.org/10.1016/j.intimp.2018.01.024 CrossRefPubMedGoogle Scholar
  19. 19.
    Zhao W, Huang Y, Liu Z, Cao BB, Peng YP, Qiu YH (2013) Dopamine receptors modulate cytotoxicity of natural killer cells via cAMP-PKA-CREB signaling pathway. PLoS ONE 8(6):e65860.  https://doi.org/10.1371/journal.pone.0065860 CrossRefPubMedCentralPubMedGoogle Scholar
  20. 20.
    Yan Y, Jiang W, Liu L, Wang X, Ding C, Tian Z, Zhou R (2015) Dopamine controls systemic inflammation through inhibition of NLRP3 inflammasome. Cell 160(1–2):62–73.  https://doi.org/10.1016/j.cell.2014.11.047 CrossRefPubMedGoogle Scholar
  21. 21.
    Basu B, Sarkar C, Chakroborty D, Ganguly S, Shome S, Dasgupta PS, Basu S (2010) D1 and D2 dopamine receptor-mediated inhibition of activated normal T cell proliferation is lost in jurkat T leukemic cells. J Biol Chem 285(35):27026–27032.  https://doi.org/10.1074/jbc.M110.144022 CrossRefPubMedCentralPubMedGoogle Scholar
  22. 22.
    Shao QH, Zhang XL, Chen Y, Zhu CG, Shi JG, Yuan YH, Chen NH (2018) Anti-neuroinflammatory effects of 20C from Gastrodia elata via regulating autophagy in LPS-activated BV-2 cells through MAPKs and TLR4/Akt/mTOR signaling pathways. Mol Immunol 99:115–123.  https://doi.org/10.1016/j.molimm.2018.04.014 CrossRefPubMedGoogle Scholar
  23. 23.
    Hu W, Shi L, Li MY, Zhou PH, Qiu B, Yin K, Zhang HH, Gao Y, Kang R, Qin SL, Ning JZ, Wang W, Zhang LJ (2017) Adrenomedullin protects Leydig cells against lipopolysaccharide-induced oxidative stress and inflammatory reaction via MAPK/NF-kappaB signalling pathways. Sci Rep 7(1):16479.  https://doi.org/10.1038/s41598-017-16008-x CrossRefPubMedCentralPubMedGoogle Scholar
  24. 24.
    Deb DK, Bao R, Li YC (2017) Critical role of the cAMP-PKA pathway in hyperglycemia-induced epigenetic activation of fibrogenic program in the kidney. FASEB J 31(5):2065–2075.  https://doi.org/10.1096/fj.201601116R CrossRefPubMedCentralPubMedGoogle Scholar
  25. 25.
    Somalwar AR, Choudhary AG, Sharma PR, Sagarkar BN, Sakharkar S, Subhedar AJ, Kokare NK DM (2018) Cocaine- and amphetamine-regulated transcript peptide (CART) induced reward behavior is mediated via Gi/o dependent phosphorylation of PKA/ERK/CREB pathway. Behav Brain Res 348:9–21.  https://doi.org/10.1016/j.bbr.2018.03.035 CrossRefPubMedGoogle Scholar
  26. 26.
    Moon SK, Cha BY, Kim CH (2004) ERK1/2 mediates TNF-alpha-induced matrix metalloproteinase-9 expression in human vascular smooth muscle cells via the regulation of NF-kappaB and AP-1: involvement of the ras dependent pathway. J Cell Physiol 198(3):417–427.  https://doi.org/10.1002/jcp.10435 CrossRefPubMedGoogle Scholar
  27. 27.
    Yang CC, Hsiao LD, Yang CM, Lin CC (2017) Thrombin enhanced matrix metalloproteinase-9 expression and migration of SK-N-SH cells via PAR-1, c-Src, PYK2, EGFR, Erk1/2 and AP-1. Mol Neurobiol 54(5):3476–3491.  https://doi.org/10.1007/s12035-016-9916-0 CrossRefPubMedGoogle Scholar
  28. 28.
    Kefaloyianni E, Gaitanaki C, Beis I (2006) ERK1/2 and p38-MAPK signalling pathways, through MSK1, are involved in NF-kappaB transactivation during oxidative stress in skeletal myoblasts. Cell Signal 18(12):2238–2251.  https://doi.org/10.1016/j.cellsig.2006.05.004 CrossRefPubMedGoogle Scholar
  29. 29.
    Natarajan K, Abraham P, Kota R, Isaac B (2018) NF-kappaB-iNOS-COX2-TNF alpha inflammatory signaling pathway plays an important role in methotrexate induced small intestinal injury in rats. Food Chem Toxicol 118:766–783.  https://doi.org/10.1016/j.fct.2018.06.040 CrossRefPubMedGoogle Scholar
  30. 30.
    Jiang B, Xu S, Hou X, Pimentel DR, Brecher P, Cohen RA (2004) Temporal control of NF-kappaB activation by ERK differentially regulates interleukin-1beta-induced gene expression. J Biol Chem 279(2):1323–1329.  https://doi.org/10.1074/jbc.M307521200 CrossRefPubMedGoogle Scholar
  31. 31.
    Covey DP, Mateo Y, Sulzer D, Cheer JF, Lovinger DM (2017) Endocannabinoid modulation of dopamine neurotransmission. Neuropharmacology 124:52–61.  https://doi.org/10.1016/j.neuropharm.2017.04.033 CrossRefPubMedCentralPubMedGoogle Scholar
  32. 32.
    McKenna F, McLaughlin PJ, Lewis BJ, Sibbring GC, Cummerson JA, Bowen-Jones D, Moots RJ (2002) Dopamine receptor expression on human T- and B-lymphocytes, monocytes, neutrophils, eosinophils and NK cells: a flow cytometric study. J Neuroimmunol 132(1–2):34–40.  https://doi.org/10.1016/S0165-5728(02)00280-1 CrossRefPubMedGoogle Scholar
  33. 33.
    Wedel J, Hottenrott MC, Stamellou E, Breedijk A, Tsagogiorgas C, Hillebrands JL, Yard BA (2014) N-Octanoyl dopamine transiently inhibits T cell proliferation via G1 cell-cycle arrest and inhibition of redox-dependent transcription factors. J Leukoc Biol 96(3):453–462.  https://doi.org/10.1189/jlb.3A0813-455R CrossRefPubMedCentralPubMedGoogle Scholar
  34. 34.
    Ferreira TB, Barros PO, Teixeira B, Cassano T, Centuriao N, Kasahara TM, Hygino J, Vasconcelos CC, Filho HA, Alvarenga R, Wing AC, Andrade RM, Andrade AF, Bento CA (2014) Dopamine favors expansion of glucocorticoid-resistant IL-17-producing T cells in multiple sclerosis. Brain Behav Immun 41:182–190.  https://doi.org/10.1016/j.bbi.2014.05.013 CrossRefPubMedGoogle Scholar
  35. 35.
    Matsuyama T, Kawano M, Takagi R, Nakagome K, Chikamatsu K, Matsushita S (2018) Interleukin-8 produced by T cells is under the control of dopamine signaling. Clin Exp Neuroimmunol 9(4):251–257.  https://doi.org/10.1111/cen3.12472 doiCrossRefGoogle Scholar
  36. 36.
    Brustolim D, Ribeiro-dos-Santos R, Kast RE, Altschuler EL, Soares MBP (2006) A new chapter opens in anti-inflammatory treatments: the antidepressant bupropion lowers production of tumor necrosis factor-alpha and interferon-gamma in mice. Int Immunopharmacol 6(6):903–907.  https://doi.org/10.1016/j.intimp.2005.12.007 CrossRefPubMedGoogle Scholar
  37. 37.
    Lee D (2015) Global and local missions of cAMP signaling in neural plasticity, learning, and memory. Front Pharmacol 6:161.  https://doi.org/10.3389/fphar.2015.00161 PubMedCentralCrossRefPubMedGoogle Scholar
  38. 38.
    Ruggiero C, Doghman-Bouguerra M, Ronco C, Benhida R, Rocchi S, Lalli E (2018) The GRP78/BiP inhibitor HA15 synergizes with mitotane action against adrenocortical carcinoma cells through convergent activation of ER stress pathways. Mol Cell Endocrinol 474:57–64.  https://doi.org/10.1016/j.mce.2018.02.010 CrossRefPubMedGoogle Scholar
  39. 39.
    Nelson M, Adams T, Ojo C, Carroll MA, Catapane EJ (2018) Manganese toxicity is targeting an early step in the dopamine signal transduction pathway that controls lateral cilia activity in the bivalve mollusc Crassostrea virginica. Comp Biochem Physiol C Toxicol Pharmacol 213:1–6.  https://doi.org/10.1016/j.cbpc.2018.07.002 CrossRefPubMedGoogle Scholar
  40. 40.
    Selvaraj P, Shen Q, Yang F, Naqvi NI (2017) Cpk2, a catalytic subunit of cyclic AMP-PKA, regulates growth and pathogenesis in rice blast. Front Microbio 8:2289.  https://doi.org/10.3389/fmicb.2017.02289 CrossRefGoogle Scholar
  41. 41.
    Zhu T, Wu XL, Zhang W, Xiao M (2015) Glucagon like peptide-1 (GLP-1) modulates OVA-induced airway inflammation and mucus secretion involving a protein kinase A (PKA)-dependent nuclear factor-kappaB (NF-kappaB) signaling pathway in mice. Int J Mol Sci 16(9):20195–20211.  https://doi.org/10.3390/ijms160920195 CrossRefPubMedCentralPubMedGoogle Scholar
  42. 42.
    Vijay K (2018) Toll-like receptors in immunity and inflammatory diseases: past, present, and future. Int Immunopharmacol 59:391–412.  https://doi.org/10.1016/j.intimp.2018.03.002 CrossRefPubMedGoogle Scholar
  43. 43.
    Pires BRB, Silva R, Ferreira GM, Abdelhay E (2018) NF-kappaB: two sides of the same coin. Genes.  https://doi.org/10.3390/genes9010024 CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Guo Z, Shao L, Du Q, Park KS, Geller DA (2007) Identification of a classic cytokine-induced enhancer upstream in the human iNOS promoter. FASEB J 21(2):535–542.  https://doi.org/10.1096/fj.06-6739com CrossRefPubMedGoogle Scholar
  45. 45.
    Chu LF, Wang WT, Ghanta VK, Lin CH, Chiang YY, Hsueh CM (2008) Ischemic brain cell-derived conditioned medium protects astrocytes against ischemia through GDNF/ERK/NF-kB signaling pathway. Brain Res 1239:24–35.  https://doi.org/10.1016/j.brainres.2008.08.087 CrossRefPubMedGoogle Scholar
  46. 46.
    Filip GA, Postescu ID, Bolfa P, Catoi C, Muresan A, Clichici S (2013) Inhibition of UVB-induced skin phototoxicity by a grape seed extract as modulator of nitrosative stress, ERK/NF-kB signaling pathway and apoptosis, in SKH-1 mice. Food Chem Toxicol 57:296–306.  https://doi.org/10.1016/j.fct.2013.03.031 CrossRefPubMedGoogle Scholar
  47. 47.
    Calabrese V, Mancuso C, Calvani M, Rizzarelli E, Butterfield DA, Stella AM (2007) Nitric oxide in the central nervous system: neuroprotection versus neurotoxicity. Nat Rev Neurosci 8(10):766–775.  https://doi.org/10.1038/nrn2214 CrossRefPubMedGoogle Scholar
  48. 48.
    Basudhar D, Somasundaram V, de Oliveira GA, Kesarwala A, Heinecke JL, Cheng RY, Glynn SA, Ambs S, Wink DA, Ridnour LA (2017) Nitric oxide synthase-2-derived nitric oxide drives multiple pathways of breast cancer progression. Antioxid Redox Signal 26(18):1044–1058.  https://doi.org/10.1089/ars.2016.6813 CrossRefPubMedCentralPubMedGoogle Scholar
  49. 49.
    Adams L, Franco MC, Estevez AG (2015) Reactive nitrogen species in cellular signaling. Exp Biol Med (Maywood) 240(6):711–717.  https://doi.org/10.1177/1535370215581314 CrossRefGoogle Scholar
  50. 50.
    Dietz AK, Robinson RR, Forsthuber T (2018) Protective effect of IFN-γ during experimental autoimmune encephalomyelitis is associated with the induction of inducible nitric oxide synthase. J Immunol 200(1 Supplement):54.10Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Biao Wang
    • 1
  • Teng Chen
    • 2
  • Guodong Li
    • 1
  • Yuwei Jia
    • 1
  • Jing Wang
    • 1
  • Li Xue
    • 3
  • Yanjiong Chen
    • 1
    Email author
  1. 1.Department of Immunology and Pathogenic Biology, College of Basic MedicineXi’an Jiaotong University Health Science CenterXi’anChina
  2. 2.Key Laboratory of the Health Ministry for Forensic MedicineForensic Medicine College of Xi’an Jiaotong UniversityXi’anChina
  3. 3.Department of LaboratoryThe Second Affiliated Hospital of Medical College of Xi’an Jiaotong UniversityXi’anChina

Personalised recommendations