Advertisement

The Effect of Mating and the Male Sex Peptide on Group Behaviour of Post-mated Female Drosophila melanogaster

  • R. Elwyn IsaacEmail author
Original Paper

Abstract

Sleep is a highly conserved state in animals, but its regulation and physiological function is poorly understood. Drosophila melanogaster is an excellent model for studying sleep regulation and has been used to investigate how sex and social interactions can influence wake-sleep profiles. Previously we have shown that copulation has a profound effect on day time activity and quiescence (siesta sleep) of individual post-mated females. Here we have the studied the effect of mating and the transfer of the 36 amino acid sex peptide in the seminal fluid on the behavior of mated female Drosophila populations, where there will be on-going social interactions. The locomotor activity and sleep patterns of virgin and post-mated female D. melanogaster from three laboratory strains (Oregon-R, Canton-S and Dahomey) were recorded in social groups of 20 individuals in a 12–12 h light–dark cycle. Virgin female populations from all three fly strains displayed consolidated periods of low activity in between two sharp peaks of activity, corresponding to lights-on and lights-off. Similar light-correlated peaks were recorded for the mated female populations, however, the low afternoon activity and siesta seen in virgin populations was abolished after mating in all three strains. In contrast, night activity appeared unaffected. This post-mating effect was sustained for several days and was dependent on the male SP acting as a pheromone. Evidence from mixed populations of virgin and mated females suggests that the siesta of non-mated females is not easily disturbed by the presence of highly active post-mated females.

Keywords

Drosophila Sleep Social behaviour Sex peptide Seminal fluid 

Notes

Acknowledgements

I am indebted to Tony Turner for his support and encouragement to study neuropeptides in invertebrates, I also thank Sean Sweeney, Tracy Chapman and Stuart Wigby for providing fly stocks and Carol Sowden for technical assistance.

References

  1. 1.
    Allada R, Cirelli C, Sehgal A (2017) Molecular mechanisms of sleep homeostasis in flies and mammals. Cold Spring Harb Perspect Biol 9(8):a027730.  https://doi.org/10.1101/cshperspect.a027730 CrossRefGoogle Scholar
  2. 2.
    Zimmerman JE, Naidoo N, Raizen DM, Pack AI (2008) Conservation of sleep: insights from non-mammalian model systems. Trends Neurosci 31(7):371–376.  https://doi.org/10.1016/j.tins.2008.05.001 CrossRefGoogle Scholar
  3. 3.
    Cirelli C, Tononi G (2008) Is sleep essential? PLoS Biol 6(8):1605–1611.  https://doi.org/10.1371/journal.pbio.0060216 CrossRefGoogle Scholar
  4. 4.
    Helfrich-Forster C (2018) Sleep in Insects. Ann Rev Entomol 63:69–86.  https://doi.org/10.1146/annurev-ento-020117-043201 CrossRefGoogle Scholar
  5. 5.
    Siegel JM (2005) Clues to the functions of mammalian sleep. Nature 437(7063):1264–1271.  https://doi.org/10.1038/nature04285 CrossRefGoogle Scholar
  6. 6.
    Brown RE, Basheer R, McKenna JT, Strecker RE, McCarley RW (2012) Control of sleep and wakefulness. Physiol Rev 92(3):1087–1187.  https://doi.org/10.1152/physrev.00032.2011 CrossRefGoogle Scholar
  7. 7.
    Andretic R, Shaw PJ (2005) Essentials of sleep recordings in Drosophila: moving beyond sleep time. Methods Enzymol 393:759–772.  https://doi.org/10.1016/S0076-6879(05)93040-1 CrossRefGoogle Scholar
  8. 8.
    Artiushin G, Sehgal A (2017) The Drosophila circuitry of sleep-wake regulation. Curr Opin Neurobiol 44:243–250.  https://doi.org/10.1016/j.conb.2017.03.004 CrossRefGoogle Scholar
  9. 9.
    Tomita J, Ban G, Kume K (2017) Genes and neural circuits for sleep of the fruit fly. Neurosci Res 118:82–91.  https://doi.org/10.1016/j.neures.2017.04.010 CrossRefGoogle Scholar
  10. 10.
    Allada R, Chung BY (2010) Circadian organization of behavior and physiology in Drosophila. Annu Rev Physiol 72:605–624.  https://doi.org/10.1146/annurev-physiol-021909-135815 CrossRefGoogle Scholar
  11. 11.
    Renn SCP, Park JH, Rosbash M, Hall JC, Taghert PH (1999) A pdf neuropeptide gene mutation and ablation of PDF neurons each cause severe abnormalities of behavioral circadian rhythms in Drosophila. Cell 99(7):791–802.  https://doi.org/10.1016/S0092-8674(00)81676-1 CrossRefGoogle Scholar
  12. 12.
    Kunst M, Hughes ME, Raccuglia D, Felix M, Li M, Barnett G, Duah J, Nitabach MN (2014) Calcitonin gene-related peptide neurons mediate sleep-specific circadian output in Drosophila. Curr Biol 24(22):2652–2664.  https://doi.org/10.1016/j.cub.2014.09.077 CrossRefGoogle Scholar
  13. 13.
    Hermann-Luibl C, Yoshii T, Senthilan PR, Dircksen H, Helfrich-Forster C (2014) The ion transport peptide is a new functional clock neuropeptide in the fruit fly Drosophila melanogaster. J Neurosci 34(29):9522–9536.  https://doi.org/10.1523/Jneurosci.0111-14.2014 CrossRefGoogle Scholar
  14. 14.
    Oh Y, Yoon SE, Zhang Q, Chae HS, Daubnerova I, Shafer OT, Choe J, Kim YJ (2014) A homeostatic sleep-stabilizing pathway in Drosophila composed of the sex peptide receptor and its ligand, the myoinhibitory peptide. PLoS Biol 12(10):e1001974.  https://doi.org/10.1371/journal.pbio.1001974 CrossRefGoogle Scholar
  15. 15.
    Donlea JM, Pimentel D, Talbot CB, Kempf A, Omoto JJ, Hartenstein V, Miesenbock G (2018) Recurrent circuitry for balancing sleep need and sleep. Neuron 97(2):378–389.  https://doi.org/10.1016/j.neuron.2017.12.016 CrossRefGoogle Scholar
  16. 16.
    King AN, Barber AF, Smith AE, Dreyer AP, Sitaraman D, Nitabach MN, Cavanaugh DJ, Sehgal A (2017) A Peptidergic circuit links the circadian clock to locomotor activity. Curr Biol 27(13):1915–1915+.  https://doi.org/10.1016/j.cub.2017.05.089 CrossRefGoogle Scholar
  17. 17.
    Kubli E (1992) The sex-peptide. bioessays: news and reviews in molecular. Cell Dev Biol 14(11):779–784.  https://doi.org/10.1002/bies.950141111 Google Scholar
  18. 18.
    Aigaki T, Fleischmann I, Chen PS, Kubli E (1991) Ectopic expression of sex peptide alters reproductive behavior of female D. melanogaster. Neuron 7(4):557–563CrossRefGoogle Scholar
  19. 19.
    Feng K, Palfreyman MT, Hasemeyer M, Talsma A, Dickson BJ (2014) Ascending SAG neurons control sexual receptivity of Drosophila females. Neuron 83(1):135–148.  https://doi.org/10.1016/j.neuron.2014.05.017 CrossRefGoogle Scholar
  20. 20.
    Garbe DS, Vigderman AS, Moscato E, Dove AE, Vecsey CG, Kayser MS, Sehgal A (2016) Changes in female Drosophila sleep following mating are mediated by SPSN-SAG neurons. J Biol Rhyth 31(6):551–567.  https://doi.org/10.1177/0748730416668048 CrossRefGoogle Scholar
  21. 21.
    Kubli E (2003) Sex-peptides: seminal peptides of the Drosophila male. Cell Mol Life Sci 60(8):1689–1704.  https://doi.org/10.1007/s00018-003-3052 CrossRefGoogle Scholar
  22. 22.
    Chapman T, Davies SJ (2004) Functions and analysis of the seminal fluid proteins of male Drosophila melanogaster fruit flies. Peptides 25(9):1477–1490.  https://doi.org/10.1016/j.peptides.2003.10.023 CrossRefGoogle Scholar
  23. 23.
    Moshitzky P, Fleischmann I, Chaimov N, Saudan P, Klauser S, Kubli E, Applebaum SW (1996) Sex-peptide activates juvenile hormone biosynthesis in the Drosophila melanogaster corpus allatum. Arch Insect Biochem Physiol 32 (3–4):363–374.  https://doi.org/10.1002/(SICI)1520-6327(1996)32:3/4%3C363::AID-ARCH9%3E3.0.CO;2-T CrossRefGoogle Scholar
  24. 24.
    Fan Y, Rafaeli A, Gileadi C, Kubli E, Applebaum SW (1999) Drosophila melanogaster sex peptide stimulates juvenile hormone synthesis and depresses sex pheromone production in Helicoverpa armigera. J Insect Physiol 45(2):127–133CrossRefGoogle Scholar
  25. 25.
    Fan Y, Rafaeli A, Moshitzky P, Kubli E, Choffat Y, Applebaum SW (2000) Common functional elements of Drosophila melanogaster seminal peptides involved in reproduction of Drosophila melanogaster and Helicoverpa armigera females. Insect Biochem Mol Biol 30(8–9):805–812CrossRefGoogle Scholar
  26. 26.
    Soller M, Bownes M, Kubli E (1997) Mating and sex peptide stimulate the accumulation of yolk in oocytes of Drosophila melanogaster. Eur J Biochem 243(3):732–738CrossRefGoogle Scholar
  27. 27.
    Carvalho GB, Kapahi P, Anderson DJ, Benzer S (2006) Allocrine modulation of feeding behavior by the sex peptide of Drosophila. Curr Biol 16(7):692–696.  https://doi.org/10.1016/j.cub.2006.02.064 CrossRefGoogle Scholar
  28. 28.
    Ribeiro C, Dickson BJ (2010) Sex peptide receptor and neuronal TOR/S6K signaling modulate nutrient balancing in Drosophila. Curr Biol 20(11):1000–1005.  https://doi.org/10.1016/j.cub.2010.03.061 CrossRefGoogle Scholar
  29. 29.
    Kubli E (2010) Sexual behavior: dietary food switch induced by sex. Curr Biol 20(11):R474–R476.  https://doi.org/10.1016/j.cub.2010.04.038 CrossRefGoogle Scholar
  30. 30.
    Walker SJ, Corrales-Carvajal VM, Ribeiro C (2015) Postmating circuitry modulates salt taste processing to increase reproductive output in Drosophila. Curr Biol 25(20):2621–2630.  https://doi.org/10.1016/j.cub.2015.08.043 CrossRefGoogle Scholar
  31. 31.
    Uchizono S, Tabuki Y, Kawaguchi N, Tanimura T, Itoh TQ (2017) Mated Drosophila melanogaster females consume more amino acids during the dark phase. PLoS ONE 12(2):e0172886.  https://doi.org/10.1371/journal.pone.0172886 CrossRefGoogle Scholar
  32. 32.
    Apger-McGlaughon J, Wolfner MF (2013) Post-mating change in excretion by mated Drosophila melanogaster females is a long-term response that depends on sex peptide and sperm. J Insect Physiol 59(10):1024–1030.  https://doi.org/10.1016/j.jinsphys.2013.07.001 CrossRefGoogle Scholar
  33. 33.
    Isaac RE, Li C, Leedale AE, Shirras AD (2010) Drosophila male sex peptide inhibits siesta sleep and promotes locomotor activity in the post-mated female. Proc Biol Sci 277(1678):65–70.  https://doi.org/10.1098/rspb.2009.1236 CrossRefGoogle Scholar
  34. 34.
    Bath E, Bowden S, Peters C, Reddy A, Tobias JA, Easton-Calabria E, Seddon N, Goodwin SF, Wigby S (2017) Sperm and sex peptide stimulate aggression in female Drosophila. Nature Ecol Evol 1(6):0154.  https://doi.org/10.1038/s41559-017-0154 CrossRefGoogle Scholar
  35. 35.
    Avila FW, Ravi Ram K, Bloch Qazi MC, Wolfner MF (2010) Sex peptide is required for the efficient release of stored sperm in mated Drosophila females. Genetics 186(2):595–600.  https://doi.org/10.1534/genetics.110.119735 CrossRefGoogle Scholar
  36. 36.
    Domanitskaya EV, Liu H, Chen S, Kubli E (2007) The hydroxyproline motif of male sex peptide elicits the innate immune response in Drosophila females. The FEBS J 274(21):5659–5668.  https://doi.org/10.1111/j.1742-4658.2007.06088.x CrossRefGoogle Scholar
  37. 37.
    Liu H, Kubli E (2003) Sex-peptide is the molecular basis of the sperm effect in Drosophila melanogaster. Proc Natl Acad Sci USA 100(17):9929–9933.  https://doi.org/10.1073/pnas.1631700100 CrossRefGoogle Scholar
  38. 38.
    Peng J, Chen S, Busser S, Liu H, Honegger T, Kubli E (2005) Gradual release of sperm bound sex-peptide controls female postmating behavior in Drosophila. Curr Biol 15(3):207–213.  https://doi.org/10.1016/j.cub.2005.01.034 CrossRefGoogle Scholar
  39. 39.
    Chen PS, Stumm-Zollinger E, Aigaki T, Balmer J, Bienz M, Bohlen P (1988) A male accessory gland peptide that regulates reproductive behavior of female D. melanogaster. Cell 54(3):291–298CrossRefGoogle Scholar
  40. 40.
    Schmidt T, Choffat Y, Klauser S, Kubli E (1993) The Drosophila-Melanogaster sex-peptide—a molecular analysis of structure-function-relationships. J Insect Physiol 39(5):361–368.  https://doi.org/10.1016/0022-1910(93)90023-K CrossRefGoogle Scholar
  41. 41.
    Isaac RE, Kim YJ, Audsley N (2014) The degradome and the evolution of Drosophila sex peptide as a ligand for the MIP receptor. Peptides 53:258–264.  https://doi.org/10.1016/j.peptides.2013.12.016 CrossRefGoogle Scholar
  42. 42.
    Ho KS, Sehgal A (2005) Drosophila melanogaster: an insect model for fundamental studies of sleep. Methods Enzymol 393:772–793.  https://doi.org/10.1016/S0076-6879(05)93041-3 CrossRefGoogle Scholar
  43. 43.
    Cao WH, Edery I (2017) Mid-day siesta in natural populations of D-melanogaster from Africa exhibits an altitudinal cline and is regulated by splicing of a thermosensitive intron in the period clock gene. BMC Evol Biol 17:32.  https://doi.org/10.1186/s12862-017-0880-8 CrossRefGoogle Scholar
  44. 44.
    Yang Y, Edery I (2018) Parallel clinal variation in the mid-day siesta of Drosophila melanogaster implicates continent-specific targets of natural selection. PLoS Genet 14 (9):e1007612.  https://doi.org/10.1371/journal.pgen.1007612 CrossRefGoogle Scholar
  45. 45.
    Yang CH, Belawat P, Hafen E, Jan LY, Jan YN (2008) Drosophila egg-laying site selection as a system to study simple decision-making processes. Science 319(5870):1679–1683.  https://doi.org/10.1126/science.1151842 CrossRefGoogle Scholar
  46. 46.
    Ferguson CT, O’Neill TL, Audsley N, Isaac RE (2015) The sexually dimorphic behaviour of adult Drosophila suzukii: elevated female locomotor activity and loss of siesta is a post-mating response. J Exp Biol 218(Pt 23):3855–3861.  https://doi.org/10.1242/jeb.125468 CrossRefGoogle Scholar
  47. 47.
    Dove AE, Cook BL, Irgebay Z, Vecsey CG (2017) Mechanisms of sleep plasticity due to sexual experience in Drosophila melanogaster. Physiol Behav 180:146–158.  https://doi.org/10.1016/j.physbeh.2017.08.020 CrossRefGoogle Scholar
  48. 48.
    Ganguly-Fitzgerald I, Donlea J, Shaw PJ (2006) Waking experience affects sleep need in Drosophila. Science 313(5794):1775–1781.  https://doi.org/10.1126/science.1130408 CrossRefGoogle Scholar
  49. 49.
    Levine JD, Funes P, Dowse HB, Hall JC (2002) Resetting the circadian clock by social experience in Drosophila melanogaster. Science 298(5600):2010–2012.  https://doi.org/10.1126/science.1076008 CrossRefGoogle Scholar
  50. 50.
    Liu C, Haynes PR, Donelson NC, Aharon S, Griffith LC (2015) Sleep in populations of Drosophila melanogaster. eNeuro 2(4):ENEURO–0071.  https://doi.org/10.1523/ENEURO.0071-15.2015 CrossRefGoogle Scholar
  51. 51.
    Lone SR, Potdar S, Srivastava M, Sharma VK (2016) Social experience is sufficient to modulate sleep need of Drosophila without increasing wakefulness. PLoS ONE 11(3):e0150596.  https://doi.org/10.1371/journal.pone.0150596 CrossRefGoogle Scholar
  52. 52.
    Colomb J, Brembs B (2014) Sub-strains of Drosophila Canton-S differ markedly in their locomotor behavior. F1000Research 3:176.  https://doi.org/10.12688/f1000research.4263.2 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Biology, Faculty of Biological SciencesUniversity of LeedsLeedsUK

Personalised recommendations