Advertisement

Selective 14-3-3γ Upregulation Promotes Beclin-1-LC3-Autophagic Influx via β-Catenin Interaction in Starved Neurons In Vitro and In Vivo

  • Xin Xin Xiong
  • Dian Xing Hu
  • Lu Xu
  • Huang Lin
  • Yu Zhang
  • Chun Yang Li
  • Xiao Qian Chen
Original Paper

Abstract

Lack of blood or glucose supply is the most common pathological factor in the brain. To cope with such an energy stress, initiating programmed autophagic processes in neurons is required. However, the mechanisms controlling neuronal autophagy during starvation remain far from clear. Here, we report an essential role of 14-3-3γ in starvation-activated neuronal autophagic influx signaling and elucidate the underlying mechanism. Double-fluorescent immunostaining demonstrates that 14-3-3γ protein elevation is well co-localized with Beclin-1 and LC3 elevation in cortical neurons in ischemic brains. Starvation treatment activates autophagic influx and upregulates Beclin-1 and only the γ isoform of 14-3-3 in N2a cells and cultured cortical neurons. Suppressing overall 14-3-3 function by difopein overexpression or knocking-out the γ isoform of 14-3-3 is sufficient to abolish starvation-induced Beclin-1 induction and LC3 activation while overexpressing 14-3-3γ but no other 14-3-3 isoform significantly upregulate Beclin-1-LC3 signaling. Upon starvation, 14-3-3γ binds more p-β-catenin but less Beclin-1. Finally, overexpressing 14-3-3γ reactivates β-catenin-suppressed Beclin-1-LC3 signaling in neuronal cells. Taken together, our data reveal that starvation-induced 14-3-3γ is required for β-catenin-Beclin-1-LC3-autophagy in starved neurons in vitro and in vivo, which may provide insights in the treatment of neurologic diseases such as stoke.

Keywords

14-3-3 Protein BECN1 Neuron Ischemic stroke Energy stress Autophagy 

Abbreviations

DFP

Dimeric 14-3-3 peptide inhibitor (difopein)

EBSS

Earle’s balanced salt solution

GFP

Green fluorescent protein

GST

Glutathione S-transferase

sgRNA

Single guide RNA

Ipsi

Ipsilateral cortex

Contra

Contralateral cortex

YFP

Yellow fluorescent protein.

Notes

Acknowledgements

This work was supported by grants from the National Nature Science Foundation of China (Grant Nos. 81471386, 81672504), the Integrated Innovative Team for Major Human Diseases Program of Tongji Medical College, HUST (Grant No. 5001530026), the Fundamental Research Funds for the Central Universities, HUST (Grant No. 2017KFYXJJ048), China Postdoctoral Scientific Foundation (Grant No. 2018M633237).

Compliance with Ethical Standards

Conflict of interest

The authors declare no conflict of interest.

Supplementary material

11064_2019_2717_MOESM1_ESM.docx (120 kb)
Supplementary material 1 (DOCX 120 KB)

References

  1. 1.
    Jia H, Liang Z, Zhang X, Wang J, Xu W, Qian H (2017) 14-3-3 proteins: an important regulator of autophagy in diseases. Am J Transl Res 9:4738–4746Google Scholar
  2. 2.
    Xu J, Huai Y, Meng N, Dong Y, Liu Z, Qi Q, Hu M, Fan M, Jin W, Lv P (2017) L-3-n-butylphthalide activates Akt/mTOR signaling, inhibits neuronal apoptosis and autophagy and improves cognitive impairment in mice with repeated cerebral ischemia-reperfusion injury. Neurochem Res 42:2968–2981CrossRefGoogle Scholar
  3. 3.
    Huang JR, Tan GM, Li Y, Shi Z (2017) The emerging role of cables1 in cancer and other diseases. Molecular pharmacology 92:240–245CrossRefGoogle Scholar
  4. 4.
    Chen XQ, Fung YW, Yu AC (2005) Association of 14-3-3gamma and phosphorylated bad attenuates injury in ischemic astrocytes. J Cereb Blood Flow Metab 25:338–347CrossRefGoogle Scholar
  5. 5.
    Lai XJ, Ye SQ, Zheng L, Li L, Liu QR, Yu SB, Pang Y, Jin S, Li Q, Yu AC, Chen XQ (2014) Selective 14-3-3gamma induction quenches p-beta-catenin Ser37/Bax-enhanced cell death in cerebral cortical neurons during ischemia. Cell Death Dis 5:e1184CrossRefGoogle Scholar
  6. 6.
    Chen XQ, Liu S, Qin LY, Wang CR, Fung YW, Yu AC (2005) Selective regulation of 14-3-3eta in primary culture of cerebral cortical neurons and astrocytes during development. J Neurosci Res 79:114–118CrossRefGoogle Scholar
  7. 7.
    Zhou XY, Hu DX, Chen RQ, Chen XQ, Dong WL, Yi CL (2017) 14-3-3 isoforms differentially regulate NFkappaB signaling in the brain after ischemia-reperfusion. Neurochem Res 42:2354–2362CrossRefGoogle Scholar
  8. 8.
    Li H, Guo Y, Teng J, Ding M, Yu AC, Chen J (2006) 14-3-3gamma affects dynamics and integrity of glial filaments by binding to phosphorylated GFAP. J Cell Sci 119:4452–4461CrossRefGoogle Scholar
  9. 9.
    Cavallucci V, Bisicchia E, Cencioni MT, Ferri A, Latini L, Nobili A, Biamonte F, Nazio F, Fanelli F, Moreno S, Molinari M, Viscomi MT, D’Amelio M (2014) Acute focal brain damage alters mitochondrial dynamics and autophagy in axotomized neurons. Cell Death Dis 5:e1545CrossRefGoogle Scholar
  10. 10.
    Khan MW, Layden BT, Chakrabarti P (2018) Inhibition of mTOR complexes protects cancer cells from glutamine starvation induced cell death by restoring Akt stability. Biochim Biophys Acta 1864:2040–2052CrossRefGoogle Scholar
  11. 11.
    Kang R, Zeh HJ, Lotze MT, Tang D (2011) The Beclin 1 network regulates autophagy and apoptosis. Cell Death Differ 18:571–580CrossRefGoogle Scholar
  12. 12.
    Wild P, McEwan DG, Dikic I (2014) The LC3 interactome at a glance. J Cell Sci 127:3–9CrossRefGoogle Scholar
  13. 13.
    Clapp C, Portt L, Khoury C, Sheibani S, Norman G, Ebner P, Eid R, Vali H, Mandato CA, Madeo F, Greenwood MT (2012) 14-3-3 protects against stress-induced apoptosis. Cell Death Dis 3:e348CrossRefGoogle Scholar
  14. 14.
    Wang RC, Wei Y, An Z, Zou Z, Xiao G, Bhagat G, White M, Reichelt J, Levine B (2012) Akt-mediated regulation of autophagy and tumorigenesis through Beclin 1 phosphorylation. Science 338:956–959CrossRefGoogle Scholar
  15. 15.
    Qiu XY, Hu DX, Chen WQ, Chen RQ, Qian SR, Li CY, Li YJ, Xiong XX, Liu D, Pan F, Yu SB, Chen XQ (2018) PD-L1 confers glioblastoma multiforme malignancy via Ras binding and Ras/Erk/EMT activation. Biochim Biophys Acta 1864:1754–1769CrossRefGoogle Scholar
  16. 16.
    Yang Y, Qiu JG, Li Y, Di JM, Zhang WJ, Jiang QW, Zheng DW, Chen Y, Wei MN, Huang JR, Wang K, Shi Z (2016) Targeting ABCB1-mediated tumor multidrug resistance by CRISPR/Cas9-based genome editing. Am J Transl Res 8:3986–3994Google Scholar
  17. 17.
    Xie XQ, Zhang P, Tian B, Chen XQ (2017) Downregulation of NAD-Dependent Deacetylase SIRT2 Protects Mouse Brain Against Ischemic Stroke. Mol Neurobiol 54:7251–7261CrossRefGoogle Scholar
  18. 18.
    Xiong XX, Pan F, Chen RQ, Hu DX, Qiu XY, Li CY, Xie XQ, Tian B, Chen XQ (2018) Neuroglobin boosts axon regeneration during ischemic reperfusion via p38 binding and activation depending on oxygen signal. Cell Death Dis 9:163CrossRefGoogle Scholar
  19. 19.
    Mizushima N, Yoshimori T, Levine B (2010) Methods in mammalian autophagy research. Cell 140:313–326CrossRefGoogle Scholar
  20. 20.
    Xing SS, Yang XY, Zheng T, Li WJ, Wu D, Chi JY, Bian F, Bai XL, Wu GJ, Zhang YZ, Zhang CT, Zhang YH, Li YS, Jin S (2015) Salidroside improves endothelial function and alleviates atherosclerosis by activating a mitochondria-related AMPK/PI3K/Akt/eNOS pathway. Vascul Pharmacol 72:141–152CrossRefGoogle Scholar
  21. 21.
    Wang P, Liang J, Li Y, Li J, Yang X, Zhang X, Han S, Li S, Li J (2014) Down-regulation of miRNA-30a alleviates cerebral ischemic injury through enhancing beclin 1-mediated autophagy. Neurochem Res 39:1279–1291CrossRefGoogle Scholar
  22. 22.
    Song DD, Zhang TT, Chen JL, Xia YF, Qin ZH, Waeber C, Sheng R (2017) Sphingosine kinase 2 activates autophagy and protects neurons against ischemic injury through interaction with Bcl-2 via its putative BH3 domain. Cell Death Dis 8:e2912CrossRefGoogle Scholar
  23. 23.
    Wang W, Li M, Wang Y, Li Q, Deng G, Wan J, Yang Q, Chen Q, Wang J (2016) GSK-3beta inhibitor TWS119 attenuates rtPA-induced hemorrhagic transformation and activates the Wnt/beta-catenin signaling pathway after acute ischemic stroke in rats. Mol Neurobiol 53:7028–7036CrossRefGoogle Scholar
  24. 24.
    Li W, Yang X, Zheng T, Xing S, Wu Y, Bian F, Wu G, Li Y, Li J, Bai X, Wu D, Jia X, Wang L, Zhu L, Jin S (2017) TNF-alpha stimulates endothelial palmitic acid transcytosis and promotes insulin resistance. Sci Rep 7:44659CrossRefGoogle Scholar
  25. 25.
    Bai XL, Yang XY, Li JY, Ye L, Jia X, Xiong ZF, Wang YM, Jin S (2017) Cavin-1 regulates caveolae-mediated LDL transcytosis: crosstalk in an AMPK/eNOS/ NF-kappaB/Sp1 loop. Oncotarget 8:103985–103995Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer MedicineSun Yat-Sen University Cancer CenterGuangzhouChina
  2. 2.Department of Pathophysiology, School of Basic Medicine, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina

Personalised recommendations