SSeCKS promoted lipopolysaccharide-sensitized astrocytes migration via increasing β-1,4-galactosyltransferase-I activity

  • Hua Wei
  • Leiting Xu
  • Chunmiao Li
  • Lianliang Liu
  • Derry Minyao Ng
  • Maria Haleem
  • Lingli Jiang
  • Ning Sun
  • Qingzhi Ling
  • Shaohua Ma
  • Lingli Zhang
  • Qinwen WangEmail author
  • Tao TaoEmail author
Original Paper


Astrocytes migration is essential in the formation of the glial scar during the injury response process of the central nervous system (CNS) especially during inflammation. Integrin β1 is part of the extracellular matrix receptors in the CNS and it has been reported that integrin β-deficient astrocytes randomly migrate into wounds. Previous studies have found that β-1,4 Galactosyltransferase-I (β-1,4-GalT-I) enhanced the β-1,4-galactosylation of integrin β1. Src-suppressed C kinase substrate (SSeCKS) is an inflammatory response protein which functionally interacts with β-1,4 Galactosyltransferase-I (β-1,4-GalT-I). In this study we aim to investigate the role of SSeCKS and β-1,4-GalT-I in the migration of astrocytes during lipopolysaccharide (LPS)-induced inflammation. Coimmunoprecipitation and immunofluorescence assays have demonstrated that SSeCKS and β-1,4-GalT-I were significantly enhanced in LPS-treated astrocytes and their interactions may occur in the Trans-Golgi Network. Lectin blot showed that the knockdown of β-1,4-GalT-I could inhibit the β-1,4-galactosylation of glycoproteins including integrin β1 with and without LPS, and that SSeCKS knockdown inhibits the β-1,4-galactosylation of glycoproteins including integrin β1 only in LPS-induced astrocytes. Additionally, wound healing assays indicated that β-1,4-GalT-I knockdown could inhibit astrocytes migration with and without LPS but SSeCKS inhibited cell migration only when LPS was present. Therefore our findings suggest that SSeCKS affects astrocytes migration by regulating the β-1,4-galactosylation of glycoproteins including integrin β1, via β-1,4-GalT-I expression in LPS-sensitized astrocytes.


Astrocytes Migration SSeCKS β-1,4-Galactosyltransferase-I Lipopolysaccharide 



This work was supported by the National Natural Science Foundation of China (Grant No. 31600402), China Postdoctoral Science Fund (Grant No. 2017M621895), Zhejiang Province Postdoctoral Research Fund (Grant No. ZX2016000849), Ningbo Postdoctoral Research Fund (Grant No. ZX2017000053), Natural Science Foundation of Ningbo (Grant No. 2017A610216, 2016A610205), Natural Science Foundation of Zhejiang Province (Grant No. Y16H070001), Research Project of Zhejiang Provincial Department of Education (Y201738586), Agricultural Project of Public Welfare Technology Research in Zhejiang Provincial Science and Technology Department (Grant No. ZX2014C32047).

Compliance with Ethical Standards

Conflict of interest

The authors declare no conflict of interest.


  1. 1.
    Kniss DA, Burry RW (1988) Serum and fibroblast growth factor stimulate quiescent astrocytes to re-enter the cell cycle. Brain Res 439(1–2):281–288. doi:0006-8993(88)91485-0 [pii]CrossRefGoogle Scholar
  2. 2.
    Ridet JL, Malhotra SK, Privat A, Gage FH (1997) Reactive astrocytes: cellular and molecular cues to biological function. Trends Neurosci 20(12):570–577. doi:S0166-2236(97)01139-9 [pii]CrossRefGoogle Scholar
  3. 3.
    Kuchler-Bopp S, Delaunoy JP, Artault JC, Zaepfel M, Dietrich JB (1999) Astrocytes induce several blood-brain barrier properties in non-neural endothelial cells. Neuroreport 10(6):1347–1353CrossRefGoogle Scholar
  4. 4.
    Rakic P (1971) Neuron-glia relationship during granule cell migration in developing cerebellar cortex. A Golgi and electronmicroscopic study in Macacus Rhesus. J Comp Neurol 141(3):283–312. CrossRefGoogle Scholar
  5. 5.
    Tao-Cheng JH, Nagy Z, Brightman MW (1987) Tight junctions of brain endothelium in vitro are enhanced by astroglia. J Neurosci 7(10):3293–3299CrossRefGoogle Scholar
  6. 6.
    Brakebusch C, Fassler R (2005) beta 1 integrin function in vivo: adhesion, migration and more. Cancer Metastasis Rev 24(3):403–411. CrossRefGoogle Scholar
  7. 7.
    Takada Y, Ye X, Simon S (2007) The integrins. Genome Biol 8 (5):215. doi: gb-2007-8-5-215 [pii]CrossRefGoogle Scholar
  8. 8.
    Vogelezang M, Forster UB, Han J, Ginsberg MH, ffrench-Constant C (2007) Neurite outgrowth on a fibronectin isoform expressed during peripheral nerve regeneration is mediated by the interaction of paxillin with alpha4beta1 integrins. BMC Neurosci 8:44. doi: 1471-2202-8-44CrossRefGoogle Scholar
  9. 9.
    Morgan MR, Humphries MJ, Bass MD (2007) Synergistic control of cell adhesion by integrins and syndecans. Nat Rev Mol Cell Biol 8(12):957–969 doi: nrm2289 [pii]CrossRefGoogle Scholar
  10. 10.
    Peng H, Shah W, Holland P, Carbonetto S (2008) Integrins and dystroglycan regulate astrocyte wound healing: the integrin beta1 subunit is necessary for process extension and orienting the microtubular network. Dev Neurobiol 68(5):559–574. CrossRefGoogle Scholar
  11. 11.
    Guo HB, Lee I, Kamar M, Akiyama SK, Pierce M (2002) Aberrant N-glycosylation of beta1 integrin causes reduced alpha5beta1 integrin clustering and stimulates cell migration. Cancer Res 62(23):6837–6845Google Scholar
  12. 12.
    Kienzle C, von Blume J (2014) Secretory cargo sorting at the trans-Golgi network. Trends in Cell Biol 24(10):584–593. CrossRefGoogle Scholar
  13. 13.
    Weingarten S, Thiem J (2004) Formation of LacNAc mimetics employing novel donor substrates for enzymatic beta 1 → 4 galactosylation. Org Biomol Chem 2(7):961–962. CrossRefGoogle Scholar
  14. 14.
    Owatworakit A, Townsend B, Louveau T, Jenner H, Rejzek M, Hughes RK, Saalbach G, Qi X, Bakht S, Roy AD, Mugford ST, Goss RJ, Field RA, Osbourn A (2013) Glycosyltransferases from oat (Avena) implicated in the acylation of avenacins. J Biol Chem 288(6):3696–3704. 5M112.426155 [pii]CrossRefGoogle Scholar
  15. 15.
    Asano M, Furukawa K, Kido M, Matsumoto S, Umesaki Y, Kochibe N, Iwakura Y (1997) Growth retardation and early death of beta-1,4-galactosyltransferase knockout mice with augmented proliferation and abnormal differentiation of epithelial cells. EMBO J 16(8):1850–1857. CrossRefGoogle Scholar
  16. 16.
    Chui D, Oh-Eda M, Liao YF, Panneerselvam K, Lal A, Marek KW, Freeze HH, Moremen KW, Fukuda MN, Marth JD (1997) Alpha-mannosidase-II deficiency results in dyserythropoiesis and unveils an alternate pathway in oligosaccharide biosynthesis. Cell 90(1):157–167. doi:S0092-8674(00)80322-0 [pii]CrossRefGoogle Scholar
  17. 17.
    Yoshida A, Kobayashi K, Manya H, Taniguchi K, Kano H, Mizuno M, Inazu T, Mitsuhashi H, Takahashi S, Takeuchi M, Herrmann R, Straub V, Talim B, Voit T, Topaloglu H, Toda T, Endo T (2001) Muscular dystrophy and neuronal migration disorder caused by mutations in a glycosyltransferase, POMGnT1. Dev Cell 1(5):717–724. doi:S1534-5807(01)00070-3 [pii]CrossRefGoogle Scholar
  18. 18.
    Yan M, Xia C, Niu S, Shao X, Cheng C, Zhao J, Shen A (2007) The role of TNF-alpha and its receptors in the production of beta-1,4 galactosyltransferase I and V mRNAs by rat primary astrocytes. J Mol Neurosci 33(2):155–162. doi:JMN:33:2:155 [pii]CrossRefGoogle Scholar
  19. 19.
    Lin X, Tombler E, Nelson PJ, Ross M, Gelman IH (1996) A novel src- and ras-suppressed protein kinase C substrate associated with cytoskeletal architecture. J Biol Chem 271(45):28430–28438CrossRefGoogle Scholar
  20. 20.
    Gelman IH (2012) Suppression of tumor and metastasis progression through the scaffolding functions of SSeCKS/Gravin/AKAP12. Cancer Metastasis Rev 31(3–4):493–500. CrossRefGoogle Scholar
  21. 21.
    Sun LL, Cheng C, Liu HO, Shen CC, Xiao F, Qin J, Yang JL, Shen AG (2007) Src suppressed C kinase substrate regulates the lipopolysaccharide-induced TNF-alpha biosynthesis in rat astrocytes. J Mol Neurosci 32(1):16–24. doi:JMN:32:1:16 [pii]CrossRefGoogle Scholar
  22. 22.
    Wassler MJ, Foote CI, Gelman IH, Shur BD (2001) Functional interaction between the SSeCKS scaffolding protein and the cytoplasmic domain of beta1,4-galactosyltransferase. J Cell Sci 114(Pt 12):2291–2300Google Scholar
  23. 23.
    Shao B, Li C, Yang H, Shen A, Wu X, Yuan Q, Kang L, Liu Z, Zhang G, Lu X, Cheng C (2011) The relationship between Src-suppressed C kinase substrate and beta-1,4 galactosyltransferase-I in the process of lipopolysaccharide-induced TNF-alpha secretion in rat primary astrocytes. Cell Mol Neurobiol 31(7):1047–1056. CrossRefGoogle Scholar
  24. 24.
    Stadlin A, Tsang D, MacDonall JS, Mahadik SP, Karpiak SE (1992) An in vitro study on increased neuronal and astrocytic vulnerability to neurotoxic injury after in utero cocaine exposure: the reversal effects of GM1 treatment. Prog Brain Res 94:339–350CrossRefGoogle Scholar
  25. 25.
    Zou XH, Foong WC, Cao T, Bay BH, Ouyang HW, Yip GW (2004) Chondroitin sulfate in palatal wound healing. J Dent Res 83(11):880–885. doi:83/11/880 [pii]CrossRefGoogle Scholar
  26. 26.
    Barry ST, Critchley DR (1994) The RhoA-dependent assembly of focal adhesions in Swiss 3T3 cells is associated with increased tyrosine phosphorylation and the recruitment of both pp125FAK and protein kinase C-delta to focal adhesions. J Cell Sci 107(Pt 7):2033–2045Google Scholar
  27. 27.
    Burnworth B, Pippin J, Karna P, Akakura S, Krofft R, Zhang G, Hudkins K, Alpers CE, Smith K, Shankland SJ, Gelman IH, Nelson PJ (2012) SSeCKS sequesters cyclin D1 in glomerular parietal epithelial cells and influences proliferative injury in the glomerulus. Lab Invest 92(4):499–510. labinvest2011199 [pii]CrossRefGoogle Scholar
  28. 28.
    Amado M, Almeida R, Schwientek T, Clausen H (1999) Identification and characterization of large galactosyltransferase gene families: galactosyltransferases for all functions. Biochim Biophys Acta 1473(1):35–53. doi:S0304-4165(99)00168-3 [pii]CrossRefGoogle Scholar
  29. 29.
    Appeddu PA, Shur BD (1994) Molecular analysis of cell surface beta-1,4-galactosyltransferase function during cell migration. Proc Natl Acad Sci USA 91(6):2095–2099CrossRefGoogle Scholar
  30. 30.
    Adams JC, Watt FM (1993) Regulation of development and differentiation by the extracellular matrix. Development 117(4):1183–1198Google Scholar
  31. 31.
    Hynes RO (1992) Integrins: versatility, modulation, and signaling in cell adhesion. Cell 69(1):11–25. doi:0092-8674(92)90115-S [pii]CrossRefGoogle Scholar
  32. 32.
    King SJ, Worth DC, Scales TM, Monypenny J, Jones GE, Parsons M (2011) beta1 integrins regulate fibroblast chemotaxis through control of N-WASP stability. EMBO J 30(9):1705–1718. emboj201182 [pii]CrossRefGoogle Scholar
  33. 33.
    Isaji T, Sato Y, Fukuda T, Gu J (2009) N-glycosylation of the I-like domain of beta1 integrin is essential for beta1 integrin expression and biological function: identification of the minimal N-glycosylation requirement for alpha5beta1. J Biol Chem 284(18):12207–12216. M807920200 [pii]CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Hua Wei
    • 1
    • 2
  • Leiting Xu
    • 2
  • Chunmiao Li
    • 3
  • Lianliang Liu
    • 2
  • Derry Minyao Ng
    • 2
  • Maria Haleem
    • 2
  • Lingli Jiang
    • 1
  • Ning Sun
    • 1
  • Qingzhi Ling
    • 1
  • Shaohua Ma
    • 1
  • Lingli Zhang
    • 1
  • Qinwen Wang
    • 2
    Email author
  • Tao Tao
    • 1
    • 2
    Email author
  1. 1.Ningbo College of Health SciencesNingboPeople’s Republic of China
  2. 2.Ningbo UniversityNingboPeople’s Republic of China
  3. 3.Medical School of Nantong UniversityNantongPeople’s Republic of China

Personalised recommendations