Pathophysiology and Treatment of Canavan Disease

  • David PleasureEmail author
  • Fuzheng Guo
  • Olga Chechneva
  • Peter Bannerman
  • Jennifer McDonough
  • Travis Burns
  • Yan Wang
  • Vanessa Hull
Original Paper

Canavan Disease

Canavan disease is a recessively inherited vacuolar leukodystrophy caused by ASPA mutations [1, 2, 3]. ASPA encodes aspartoacylase, an oligodendroglial enzyme required for cleavage of the abundant brain amino acid N-acetyl-l-aspartate (NAA) to acetate and l-aspartate [4]. ASPA mutations are relatively common in Ashkenazi Jews, with carrier frequency estimates ranging between 1:40 and 1:60, but also occur, though substantially less often, in many other human populations [3, 5, 6]. The disease classically presents in infancy with ataxia, hypotonia, and failure to acquire normal developmental milestones, often in association with macrocephaly and seizures [3]. In atypical cases in which some aspartoacylase enzymatic activity remains, disease onset is delayed until several years after birth [2, 7, 8]. Neuroimaging shows brain white matter signal abnormalities, and, at later time-points, ventricular enlargement [9, 10]. In vivo proton nuclear magnetic resonance spectroscopy...


Canavan disease Aspartoacylase (encoded by ASPA) N-acetyltransferase 8-like (encoded by Nat8l) NaDC3 (encoded by Slc13a3) Vacuolar (“spongiform”) leukodystrophy N-acetyl-l-aspartate (NAA) Gene therapy 



This study was supported by Shriners Hospitals Grant 439043; NIH 1R21NS096004-01; and the Dana Foundation.


  1. 1.
    Matalon R, Michals K, Sebesta D, Deanching M, Gashkoff P, Casanova J (1988) Aspartoacylase deficiency and N-acetylaspartic aciduria in patients with Canavan disease. Am J Med Genet 29:463–471CrossRefPubMedGoogle Scholar
  2. 2.
    Mendes MI, Smith DE, Pop A et al (2017) Clinically distinct phenotypes of Canavan disease correlate with residual aspartoacylase enzyme activity. Hum Mutat 38:524–531CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Hoshino H, Kubota M (2014) Canavan disease: clinical features and recent advances in research. Pediatr Int 56:477–485CrossRefPubMedGoogle Scholar
  4. 4.
    Madhavarao CM, Moffett JR, Moore RA, Viola RE, Namboodiri MA, Jacobowitz DM (2004) Immunohistochemical localization of aspartoacylase in the rate central nervous system. J Comp Neurol 472:318–329CrossRefPubMedGoogle Scholar
  5. 5.
    Feigenbaum A, Moore R, Clarke J, Hewson S, Chitayat D, Ray PN, Stockley TL (2004) Canavan disease: carrier-frequency determination in the Ashkenazi Jewish population and development of a novel molecular diagnostic assay. Am J Med Genet 124A:142–147CrossRefPubMedGoogle Scholar
  6. 6.
    Rivas MA, Avila BE, Koskela J et al (2018) Insights into the genetic epidemiology of Crohn’s and rare diseases in the Ashkenazi Jewish population. PLoS Genet 14:e1007229CrossRefGoogle Scholar
  7. 7.
    Jellinger K, Seitelberger F (1969) Juvenile form of spongy degeneration of the CNS. Acta Neuropath (Berl) 13:276–281CrossRefGoogle Scholar
  8. 8.
    Janson CG, Kolodny EH, Zeng B-J et al (2006) Mild-onset presentation of Canavan’s disease associated with novel G212A point mutation in aspartoacylase gene. Ann Neurol 59:428–431CrossRefPubMedGoogle Scholar
  9. 9.
    Leone P, Shera D, McPhee SW et al (2012) Long-term follow-up after gene therapy for Canavan disase. Science Trans Med 4:165ra163CrossRefGoogle Scholar
  10. 10.
    Janson CG, McPhee SWJ, Francis J et al (2006) Natural history of Canavan disease revealed by proton magnetic resonance spectroscopy (1J-MRS) and diffusion-weighted MRI. Neuropediatrics 37:209–221CrossRefPubMedGoogle Scholar
  11. 11.
    Gambetti P, Mellman WJ, Gonatoas NK (1969) Familial spongy degeneration of the central nervous system (van Bogaert–Bertrand disease). an ultrastructural study. Acta Neuropathol 12:103–115CrossRefPubMedGoogle Scholar
  12. 12.
    Adachi M, Schneck L, Cara J, Volk BW (1973) Spongy degeneration of the central nervous system (van Bogaert and Bertrand type; Canavan disease). A review. Hum Pathol 4:331–347CrossRefPubMedGoogle Scholar
  13. 13.
    Mirimanoff P (1976) La dystrophie spongieuse hereditaire des enfants (Canavan van Bogaert–Bertrand). J Neurol Sci 28:159–185CrossRefPubMedGoogle Scholar
  14. 14.
    Traka M, Wollmann RI, Cerda SR, Dugas J, Barres BA, Popko B (2008) Nur7 is a nonsense mutation in the mouse aspartoacylase gene that causes spongy degeneration of the CNS. J Neurosci 28:11537–11549CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Guo F, Bannerman P, Mills Ko E, Miers L, Xu J, Burns T, Li S, Freeman E, McDonough JA, Pleasure D (2015) Ablating N-acetylaspartate prevents leukodystrophy in a Canavan disease model. Ann Neurol 77:884–888CrossRefPubMedGoogle Scholar
  16. 16.
    Maier H, Wang-Eckhardt L, Hartmann D, Gieselmann V, Eckhardt M (2015) N-acetylaspartate synthase deficiency corrects the myelin phenotype in a Canavan disease mouse model but does not affect survival time. J Neurosci 35:14501–14516CrossRefPubMedGoogle Scholar
  17. 17.
    Sohn J, Bannerman P, Guo F, Burns T, Miers L, Croteau C, Singhal NK, McDonough JA, Pleasure D (2017) Suppressing N-acetyl-L-aspartate synthesis prevents loss of neurons in amurine model of Canavan leukodystrophy. J Neurosci 37:413–421CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Bannerman P, Guo F, Chechneva O, Burns T, Zhu X, Wang Y, Kim B, Singhal NK, McDonough JA, Pleasure D (2018) Brain Nat8l knockdown suppresses spongiform leukodystrophy in an aspartoacylase-deficient Canavan disease mouse model. Mol Ther 26:793–800CrossRefPubMedGoogle Scholar
  19. 19.
    Madhavarao CN, Arun P, Moffett JR, Szacs S, Surendram S, Matalon R, Garbern J, Hristova D, Johnson A, Jiang W, Namboodiri MA (2005) Defective N-acetylaspartate catabolism reduces brain acetate levels and myelin lipid synthesis in Canavan’s disease. Proc Natl Acad Sci USA 102:5221–5226CrossRefPubMedGoogle Scholar
  20. 20.
    Francis JS, Wojtas L, Markov V, Gray SJ, McCown TJ, Samulski RJ, Bilaniuk LT, Wang DJ, DeVivo DC, Janson CG, Leone P (2016) N-acetylaspartate supports the energetic demands of developmental myelination via oligodendroglia aspartoacylase. Neurobiol Dis 96:323–334CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Baslow MH, Guilfoyle DN (2013) Canavan disease, a rare early-onset human spongiform leukodystrophy: insights into its genesis and possible clinical interventions. Biochimie 95:946–956CrossRefPubMedGoogle Scholar
  22. 22.
    Burri R, Steffen C, Herschkowitz N (1991) N-acetyl-L-aspartate is a major source of acetyl groups for lipid synthesis during rat brain development. Dev Neurosci 13:403–411CrossRefPubMedGoogle Scholar
  23. 23.
    Wiami E, Tyteca D, Pierrot N et al (2009) Molecular identification of aspartate N-acetyltransferase and its mutation in hypacetylaspartia. Biochem J 425:127–136CrossRefGoogle Scholar
  24. 24.
    Ariyannur PS, Moffett JR, Manickam P, Pattabiraman N, Arun P, Nitta A, Nabeshima T, Madhavarao CN, Namboodiri AM (2010) Methamphetamine-induced neuronal protein NAT8L is the NAA biosynthetic enzyme: implications for specialized acetyl coenzyme A metabolism in the CNS. Brain Res 1335:1–13CrossRefPubMedGoogle Scholar
  25. 25.
    Singhal NK, Huang H, Li S, Clements R, Gadd J, Daniels A, Kooijman EE, Bannerman P, Burns T, Guo F, Pleasure D, Freeman E, Shriver L, McDonough J (2017) The neuronal metabolite NAA regulates histone H3 methylation in oligodendrocytes and myelin lipid composition. Exp Brain Res 235:279–292CrossRefPubMedGoogle Scholar
  26. 26.
    Sumi K, Uno K, Noike H, Tomohiro T, Hatanaka Y, Furukawa-Hibi Y, Nabeshima T, Miyamoto Y, Nitta A (2017) Behavioral impairment in SHATI/NAT8L knockout mice via dysfunction of myelination development. Sci Rep 7:16872CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Neale JH, Olsczewski RT, Zuo D, Jancrura KJ, Profaci CP, Lavin KM, Madore JC, Bzdega T (2011) Advances in understanding the peptide neurotransmitter NAAG and appearance of a new member of the NAAG neuropeptide family. J Neurochem 118:490–496CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Kolodziejczyk K, Hamilton NB, Wade A, Karadottir R, Attwell D (2009) The effect of N-acetyl-aspartyl-glutamate and N-acetyl-aspartate on white matter oligodendrocytes. Brain 132:1496–1508CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Appu AP, Moffett JR, Arun P, Moran S, Nambiar V, Krishnan JKS, Puthillathu N, Namboodiri AMA (2017) Increasing N-acetylaspartate in the brain during postnatal myelination does not cause the CNS pathologies of Canavan disease. Front Mol Neurosci Jun 2:10:161Google Scholar
  30. 30.
    Von Jonquieres G, Spencer ZHT, Rowlands BD et al (2018) Uncoupling N-acetylaspartate from brain pathology: implications for Canavan disease gene therapy. Acta Neuropathol 135:95–113CrossRefGoogle Scholar
  31. 31.
    Fujita T, Katsukawa H, Yodoya E, Wada M, Shimada A, Okada N, Yamamoto A, Ganapathy V (2005) Transport characteristics of N-acetyl-L-aspartate in rat astrocytes: involvement of sodium-coupledhigh-affinity carboxylate transporter NaC3/NaDC3-mediated transport system. J Neurochem 93:706–714CrossRefPubMedGoogle Scholar
  32. 32.
    Shannon RJ, van der Heide S, Carter EL, Jalloh I, Menon DK, Hutchinson PJ, Carpenter KLH (2016) Extracellular N-acetylaspartate in human traumatic brain injury. J Neurotrauma 33:319–329CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Tress O, Maglione M, May D et al (2012) Panglial gap junctional communication is essential for maintenance of myelin in the CNS. J Neurosci 32:7499–7518CrossRefPubMedGoogle Scholar
  34. 34.
    Tress O, Maglione M, Zlomuzica A, May D, Dicke N, Degen J, Dere E, Kettenmann H, Hartmann D, Willecke K (2011) Pathologic and phenotypic alterations in a mouse expressing a Connexin47 missense mutation that causes Pelizaeus-Merzbacher-like disease in humans. PLoS Genet 7:e1002146CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Lopez-Hernandez T, Sirisi S, Capdevila-Nortes X et al (2011) Molecular mechanisms of MLC1 and GLIALCAM mutations in megalencephalic leukodystrophy with subcortical cysts. Hum Mol Genet 23:5069–5086Google Scholar
  36. 36.
    Ahmed SS, Li H, Cao C et al (2013) A single intravenous rAAV injection as late as P20 achieves efficacious and sustained CNS gene therapy in Canavan mice. Mol Ther 21:2136–2147CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Gessler DJ, Li D, Xu H, Su Q, Sanmiguel J, Tuncer S, Moore C, King J, Matalon R, Gao G (2017) Redirecting N-acetylaspartate metabolism in the central nervous system normalizes myelination and rescues Canavan disease. JCI Insight 2:e90807CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Sommer A, Sass JO (2012) Expression of aspartoacylase (ASPA) and Canavan disease. Gene 505:206–210CrossRefPubMedGoogle Scholar
  39. 39.
    Gautier EL, Ivanov S, Williams JW et al (2014) Gata6 regulates aspartoacylase expression in resident peritoneal macrophages and controls their survival. J Exp Med 211:1525–1531CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Ahmed SS, Schattgen SA, Frakes AE et al (2016) rAAV gene therapy in a Canavan’s disease mouse model reveals immune impairments and an extended pathology beyond the central nervous system. Mol Ther 24:1030–1041CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Assad M, Janson C, Wang DJ, Suri N, Bilaniuk L, Leone P (2010) Lithium citrate reduces excessive intra-cerebral N-acetyl aspartate in Canavan disease. Eur J Paediatr Neruol 14:354–359CrossRefGoogle Scholar
  42. 42.
    Thangavelu B, Mutthamsetty V, Wang Q, Viola RE (2017) Design and optimization of aspartate N-acetyltransferase inhibitors for the potential treatment of Canavan disease. Bioorg Med Chem 25:870–885CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute for Pediatric Regenerative ResearchShriners Hospitals for Children Northern California and UC Davis School of MedicineSacramentoUSA
  2. 2.Department of Biological Sciences, School of Biomedical SciencesKent State UniversityKentUSA
  3. 3.SacramentoUSA

Personalised recommendations