Advertisement

Neurochemical Research

, Volume 43, Issue 9, pp 1802–1813 | Cite as

Temporal and Site-Specific Changes in Central Neuroimmune Factors During Rapid Weight Gain After Ovariectomy in Rats

  • Kathleen S. Curtis
  • Kelly McCracken
  • Enith Espinosa
  • Johnson Ong
  • Daniel J. Buck
  • Randall L. Davis
Original Paper
  • 58 Downloads

Abstract

Systemic inflammation is present in obesity and emerging evidence, primarily from studies using male rodents fed high-fat diets, suggests neuroimmune signaling also is involved. We investigated early changes in neuroimmune signaling during the weight gain that follows ovariectomy in rats. Ovariectomized (OVX) rats were given standard rat chow and terminated 5 days (baseline), 4 or 8 weeks after ovariectomy. Levels of interleukin-6 (IL-6) and monocyte chemoattractant protein-1 (MCP-1) in plasma and periuterine adipose were not affected by ovariectomy. In contrast, compared to baseline levels, IL-6 expression in the arcuate nucleus (ARC) and dorsal vagal complex (DVC) decreased by 4 weeks after OVX, but was not affected in the paraventricular nucleus (PVN). MCP-1 expression decreased by 4 weeks in the ARC and by 8 weeks in the PVN, but was not affected in the DVC. Increased glial fibrillary acidic protein (GFAP) expression in the PVN indicated astrocyte activation; decreased toll-like receptor 4 (TLR4) expression in the ARC, but not other regions, suggested early effects on innate immune factors. Importantly, in reproductively intact rats, IL-6 and MCP-1 levels in plasma, periuterine adipose, and brain regions were not affected after 8 weeks. Unlike OVX rats, GFAP expression in the DVC of intact rats was decreased at 8 weeks, and TLR4 expression in the ARC was increased at 8 weeks. Taken together, these dynamic and selective changes in neuroimmune factors co-incident with post-ovariectomy weight gain provide insight into the role of neuroimmune signaling in obesity, particularly in females.

Keywords

Arcuate nucleus Paraventricular nucleus Dorsal vagal complex IL-6 MCP-1 TLR4 

Notes

Acknowledgements

Portions of this work were presented at the annual meeting of the Society for Neuroscience (San Diego, CA; 2016). This study was supported in part by an Institutional Development Award (IDeA) from the National Institute of General Medical Sciences (8P20GM103447; E.E.) and the Oklahoma Center for the Advancement of Science and Technology (OCAST HR12-196; K.S.C.).

Author Contributions

The authors contributed to the work as follows: KS, RD—Conceptualization, experimental design, data collection and analysis, writing, and editing. KM, EE, JO, DB—data collection and analysis, writing and editing.

References

  1. 1.
    Ogden CL, Carroll MD, Fryar CD, Flegal KM (2015) Prevalence of obesity among adults and youth: United States, 2011–2014. NCHS Data Brief 219:1–8Google Scholar
  2. 2.
    CDC (2014) National diabetes statistics report: estimates of diabetes and its burden in the United States. US Department of Health and Human Services, AtlantaGoogle Scholar
  3. 3.
    Levi J, Segal LM, Rayburn J, Martin A (2015) State of obesity. Trust for America’s Health and the Robert Wood Johnson Foundation, WashingtonGoogle Scholar
  4. 4.
    Mishra AK, Dubey V, Ghosh AR (2016) Obesity: an overview of possible role(s) of gut hormones, lipid sensing and gut microbiota. Metabolism 65(1):48–65CrossRefPubMedGoogle Scholar
  5. 5.
    Morris MJ, Beilharz JE, Maniam J, Reichelt AC, Westbrook RF (2015) Why is obesity such a problem in the 21st century? The intersection of palatable food, cues and reward pathways, stress, and cognition. Neurosci Biobehav Rev 58:36–45CrossRefPubMedGoogle Scholar
  6. 6.
    Brobeck JR, Wheatland M, Strominger JL (1947) Variations in regulation of energy exchange associated with estrus, diestrus and pseudopregnancy in rats. Endocrinology 40(2):65–72CrossRefPubMedGoogle Scholar
  7. 7.
    Schwartz MW, Woods SC, Porte D Jr, Seeley RJ, Baskin DG (2000) Central nervous system control of food intake. Nature 404(6778):661–671CrossRefPubMedGoogle Scholar
  8. 8.
    Woods SC, D’Alessio DA (2008) Central control of body weight and appetite. J Clin Endocrinol Metab 93(11 Suppl 1):S37–S50CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Utoyama M, Akieda-Asai S, Koda S, Nunoi H, Date Y (2016) Role of the neural pathway from hindbrain to hypothalamus in the regulation of energy homeostasis in rats. Neurosci Lett 614:83–88CrossRefPubMedGoogle Scholar
  10. 10.
    Asarian L, Geary N (2013) Sex differences in the physiology of eating. Am J Physiol Regul Integr Comp Physiol 305(11):R1215–R1267CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Cildir G, Akincilar SC, Tergaonkar V (2013) Chronic adipose tissue inflammation: all immune cells on the stage. Trends Mol Med 19(8):487–500CrossRefPubMedGoogle Scholar
  12. 12.
    Gregor MF, Hotamisligil GS (2011) Inflammatory mechanisms in obesity. Annu Rev Immunol 29:415–445CrossRefPubMedGoogle Scholar
  13. 13.
    Xu H, Barnes GT, Yang Q, Tan G, Yang D, Chou CJ, Sole J, Nichols A, Ross JS, Tartaglia LA, Chen H (2003) Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J Clin Invest 112(12):1821–1830CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Qatanani M, Lazar MA (2007) Mechanisms of obesity-associated insulin resistance: many choices on the menu. Genes Dev 21(12):1443–1455CrossRefPubMedGoogle Scholar
  15. 15.
    Maric T, Woodside B, Luheshi GN (2014) The effects of dietary saturated fat on basal hypothalamic neuroinflammation in rats. Brain Behav Immun 36:35–45CrossRefPubMedGoogle Scholar
  16. 16.
    De Souza CT, Araujo EP, Bordin S, Ashimine R, Zollner RL, Boschero AC, Saad MJ, Velloso LA (2005) Consumption of a fat-rich diet activates a proinflammatory response and induces insulin resistance in the hypothalamus. Endocrinology 146(10):4192–4199CrossRefPubMedGoogle Scholar
  17. 17.
    Zhang X, Zhang G, Zhang H, Karin M, Bai H, Cai D (2008) Hypothalamic IKKbeta/NF-kappaB and ER stress link overnutrition to energy imbalance and obesity. Cell 135(1):61–73CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Wang X, Ge A, Cheng M, Guo F, Zhao M, Zhou X, Liu L, Yang N (2012) Increased hypothalamic inflammation associated with the susceptibility to obesity in rats exposed to high-fat diet. Exp Diab Res 2012.  https://doi.org/10.1155/2012/847246 Google Scholar
  19. 19.
    Kalin S, Heppner FL, Bechmann I, Prinz M, Tschop MH, Yi CX (2015) Hypothalamic innate immune reaction in obesity. Nat Rev Endocrinol 11(6):339–351CrossRefPubMedGoogle Scholar
  20. 20.
    Schele E, Benrick A, Grahnemo L, Egecioglu E, Anesten F, Palsdottir V, Jansson JO (2013) Inter-relation between interleukin (IL)-1, IL-6 and body fat regulating circuits of the hypothalamic arcuate nucleus. J Neuroendocrinol 25(6):580–589CrossRefPubMedGoogle Scholar
  21. 21.
    Senaris RM, Trujillo ML, Navia B, Comes G, Ferrer B, Giralt M, Hidalgo J (2011) Interleukin-6 regulates the expression of hypothalamic neuropeptides involved in body weight in a gender-dependent way. J Neuroendocrinol 23(8):675–686CrossRefPubMedGoogle Scholar
  22. 22.
    Shirazi R, Palsdottir V, Collander J, Anesten F, Vogel H, Langlet F, Jaschke A, Schurmann A, Prevot V, Shao R, Jansson JO, Skibicka KP (2013) Glucagon-like peptide 1 receptor induced suppression of food intake, and body weight is mediated by central IL-1 and IL-6. Proc Natl Acad Sci USA 110(40):16199–16204CrossRefPubMedGoogle Scholar
  23. 23.
    Poon K, Ho HT, Barson JR, Leibowitz SF (2014) Stimulatory role of the chemokine CCL2 in the migration and peptide expression of embryonic hypothalamic neurons. J Neurochem 131(4):509–520CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Kim WK, Choi EK, Sul OJ, Park YK, Kim ES, Yu R, Suh JH, Choi HS (2013) Monocyte chemoattractant protein-1 deficiency attenuates oxidative stress and protects against ovariectomy-induced chronic inflammation in mice. PloS ONE 8(8):e72108CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Core SL, Curtis KS (2017) Early oxytocin inhibition of salt intake after furosemide treatment in rats? Physiol Behav 173:34–41CrossRefPubMedGoogle Scholar
  26. 26.
    Assefa S, Curtis JT, Sethi S, Davis RL, Chen Y, Kaul R (2012) Inorganic mercury exposure in prairie voles (Microtus ochrogaster) alters the expression of toll-like receptor 4 and activates inflammatory pathways in the liver in a sex-specific manner. Hum Exp Toxicol 31(4):376–386CrossRefPubMedGoogle Scholar
  27. 27.
    Davis RL, Dertien J, Syapin PJ (2002) Ethanol-induced modulation of inducible nitric-oxide synthase activity in human A172 astrocytoma cells. Alcohol Clin Exp Res 26(9):1404–1411CrossRefPubMedGoogle Scholar
  28. 28.
    Davis RL, Buck DJ, Saffarian N, Stevens CW (2007) The opioid antagonist, beta-funaltrexamine, inhibits chemokine expression in human astroglial cells. J Neuroimmunol 186(1–2):141–149CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Williams R, Dhillon NK, Hegde ST, Yao H, Peng F, Callen S, Chebloune Y, Davis RL, Buch SJ (2009) Proinflammatory cytokines and HIV-1 synergistically enhance CXCL10 expression in human astrocytes. Glia 57(7):734–743CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Das S, Kelschenbach J, Charboneau R, Barke RA, Roy S (2011) Morphine withdrawal stress modulates lipopolysaccharide-induced interleukin 12 p40 (IL-12p40) expression by activating extracellular signal-regulated kinase 1/2, which is further potentiated by glucocorticoids. J Biol Chem 286(34):29806–29817CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Pekny M, Wilhelmsson U, Pekna M (2014) The dual role of astrocyte activation and reactive gliosis. Neurosci Lett 565:30–38CrossRefPubMedGoogle Scholar
  32. 32.
    Jiang H, Wang Y, Liang X, Xing X, Xu X, Zhou C (2017) Toll-like receptor 4 knockdown attenuates brain damage and neuroinflammation after traumatic brain injury via inhibiting neuronal autophagy and astrocyte activation. Cell Mol Neurobiol.  https://doi.org/10.1007/s10571-017-0570-5 Google Scholar
  33. 33.
    Cani PD, Amar J, Iglesias MA, Poggi M, Knauf C, Bastelica D, Neyrinck AM, Fava F, Tuohy KM, Chabo C, Waget A, Delmee E, Cousin B, Sulpice T, Chamontin B, Ferrieres J, Tanti JF, Gibson GR, Casteilla L, Delzenne NM, Alessi MC, Burcelin R (2007) Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 56(7):1761–1772CrossRefPubMedGoogle Scholar
  34. 34.
    Cani PD, Bibiloni R, Knauf C, Waget A, Neyrinck AM, Delzenne NM, Burcelin R (2008) Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes 57(6):1470–1481CrossRefPubMedGoogle Scholar
  35. 35.
    Tarttelin MF, Gorski RA (1971) Variations in food and water intake in the normal and acyclic female rat. Physiol Behav 7(6):847–852CrossRefPubMedGoogle Scholar
  36. 36.
    Tarttelin MF, Gorski RA (1973) The effects of ovarian steroids on food and water intake and body weight in the female rat. Acta Endocrinol 72(3):551–568PubMedGoogle Scholar
  37. 37.
    Lemieux C, Picard F, Labrie F, Richard D, Deshaies Y (2003) The estrogen antagonist EM-652 and dehydroepiandrosterone prevent diet- and ovariectomy-induced obesity. Obes Res 11(3):477–490CrossRefPubMedGoogle Scholar
  38. 38.
    Ke HZ, Paralkar VM, Grasser WA, Crawford DT, Qi H, Simmons HA, Pirie CM, Chidsey-Frink KL, Owen TA, Smock SL, Chen HK, Jee WS, Cameron KO, Rosati RL, Brown TA, Dasilva-Jardine P, Thompson DD (1998) Effects of CP-336,156, a new, nonsteroidal estrogen agonist/antagonist, on bone, serum cholesterol, uterus and body composition in rat models. Endocrinology 139(4):2068–2076CrossRefPubMedGoogle Scholar
  39. 39.
    Rivest S (2003) Molecular insights on the cerebral innate immune system. Brain Behav Immun 17(1):13–19CrossRefPubMedGoogle Scholar
  40. 40.
    Milanski M, Degasperi G, Coope A, Morari J, Denis R, Cintra DE, Tsukumo DM, Anhe G, Amaral ME, Takahashi HK, Curi R, Oliveira HC, Carvalheira JB, Bordin S, Saad MJ, Velloso LA (2009) Saturated fatty acids produce an inflammatory response predominantly through the activation of TLR4 signaling in hypothalamus: implications for the pathogenesis of obesity. J Neurosci 29(2):359–370CrossRefPubMedGoogle Scholar
  41. 41.
    Razolli DS, Moraes JC, Morari J, Moura RF, Vinolo MA, Velloso LA (2015) TLR4 expression in bone marrow-derived cells is both necessary and sufficient to produce the insulin resistance phenotype in diet-induced obesity. Endocrinology 156(1):103–113CrossRefPubMedGoogle Scholar
  42. 42.
    Vaure C, Liu Y (2014) A comparative review of toll-like receptor 4 expression and functionality in different animal species. Front Immunol 5:316CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Avau A, Mitera T, Put S, Put K, Brisse E, Filtjens J, Uyttenhove C, Van Snick J, Liston A, Leclercq G, Billiau AD, Wouters CH, Matthys P (2014) Systemic juvenile idiopathic arthritis-like syndrome in mice following stimulation of the immune system with Freund’s complete adjuvant: regulation by interferon-gamma. Arthritis Rheumatol 66(5):1340–1351CrossRefPubMedGoogle Scholar
  44. 44.
    Liverani E, Rico MC, Yaratha L, Tsygankov AY, Kilpatrick LE, Kunapuli SP (2014) LPS-induced systemic inflammation is more severe in P2Y12 null mice. J Leukoc Biol 95(2):313–323CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Jang SA, Lee S, Sohn EH, Yang J, Park DW, Jeong YJ, Kim I, Kwon JE, Song HS, Cho YM, Meng X, Koo HJ, Kang SC (2016) Cynanchum wilfordii Radix attenuates liver fat accumulation and damage by suppressing hepatic cyclooxygenase-2 and mitogen-activated protein kinase in mice fed with a high-fat and high-fructose diet. Nutr Res 36(9):914–924CrossRefPubMedGoogle Scholar
  46. 46.
    Brun P, Castagliuolo I, Di Leo V, Buda A, Pinzani M, Palu G, Martines D (2007) Increased intestinal permeability in obese mice: new evidence in the pathogenesis of nonalcoholic steatohepatitis. Am J Physiol Gastrointest Liver Physiol 292(2):G518–G525CrossRefPubMedGoogle Scholar
  47. 47.
    Chen A, Mumick S, Zhang C, Lamb J, Dai H, Weingarth D, Mudgett J, Chen H, MacNeil DJ, Reitman ML, Qian S (2005) Diet induction of monocyte chemoattractant protein-1 and its impact on obesity. Obes Res 13(8):1311–1320CrossRefPubMedGoogle Scholar
  48. 48.
    Suk S, Kwon GT, Lee E, Jang WJ, Yang H, Kim JH, Thimmegowda NR, Chung MY, Kwon JY, Yang S, Kim JK, Park JHY, Lee KW (2017) Gingerenone A, a polyphenol present in ginger, suppresses obesity and adipose tissue inflammation in high-fat diet-fed mice. Mol Nutr Food Res 61(10):1700139CrossRefGoogle Scholar
  49. 49.
    Valdearcos M, Xu AW, Koliwad SK (2015) Hypothalamic inflammation in the control of metabolic function. Ann Rev Physiol 77:131–160CrossRefGoogle Scholar
  50. 50.
    Aniszewska A, Chlodzinska N, Bartkowska K, Winnicka MM, Turlejski K, Djavadian RL (2015) The expression of interleukin-6 and its receptor in various brain regions and their roles in exploratory behavior and stress responses. J Neuroimmunol 284:1–9CrossRefPubMedGoogle Scholar
  51. 51.
    Van Wagoner NJ, Oh JW, Repovic P, Benveniste EN (1999) Interleukin-6 (IL-6) production by astrocytes: autocrine regulation by IL-6 and the soluble IL-6 receptor. J Neurosci 19(13):5236–5244CrossRefPubMedGoogle Scholar
  52. 52.
    Wallenius V, Wallenius K, Ahren B, Rudling M, Carlsten H, Dickson SL, Ohlsson C, Jansson JO (2002) Interleukin-6-deficient mice develop mature-onset obesity. Nat Med 8(1):75–79CrossRefPubMedGoogle Scholar
  53. 53.
    Parpura V, Heneka MT, Montana V, Oliet SH, Schousboe A, Haydon PG, Stout RF Jr, Spray DC, Reichenbach A, Pannicke T, Pekny M, Pekna M, Zorec R, Verkhratsky A (2012) Glial Cells in (patho) physiology. J Neurochem 121(1):4–27CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    St-Pierre JA, Nouel D, Dumont Y, Beaudet A, Quirion R (2000) Sub-population of cultured hippocampal astrocytes expresses neuropeptide Y Y(1) receptors. Glia 30(1):82–91CrossRefPubMedGoogle Scholar
  55. 55.
    Flaisher-Grinberg S, Tsai HC, Feng X, Wei LN (2014) Emotional regulatory function of receptor interacting protein 140 revealed in the ventromedial hypothalamus. Brain Behav Immun 40:226–234CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Vegeto E, Benedusi V, Maggi A (2008) Estrogen anti-inflammatory activity in brain: a therapeutic opportunity for menopause and neurodegenerative diseases. Front Neuroendocrinol 29(4):507–519CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Brown CM, Mulcahey TA, Filipek NC, Wise PM (2010) Production of proinflammatory cytokines and chemokines during neuroinflammation: novel roles for estrogen receptors alpha and beta. Endocrinology 151(10):4916–4925CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Kathleen S. Curtis
    • 1
  • Kelly McCracken
    • 1
  • Enith Espinosa
    • 1
  • Johnson Ong
    • 1
  • Daniel J. Buck
    • 1
  • Randall L. Davis
    • 1
  1. 1.Oklahoma State University—Center for Health SciencesTulsaUSA

Personalised recommendations