Advertisement

Neurochemical Research

, Volume 44, Issue 1, pp 170–187 | Cite as

Localization of Human Glutamate Dehydrogenases Provides Insights into Their Metabolic Role and Their Involvement in Disease Processes

  • Lambros Mathioudakis
  • Mara Bourbouli
  • Elisavet Daklada
  • Sofia Kargatzi
  • Kleita Michaelidou
  • Ioannis ZaganasEmail author
Original Paper
  • 109 Downloads

Abstract

Glutamate dehydrogenase (GDH) catalyzes the reversible deamination of l-glutamate to α-ketoglutarate and ammonia. In mammals, GDH contributes to important processes such as amino acid and carbohydrate metabolism, energy production, ammonia management, neurotransmitter recycling and insulin secretion. In humans, two isoforms of GDH are found, namely hGDH1 and hGDH2, with the former being ubiquitously expressed and the latter found mainly in brain, testis and kidney. These two iso-enzymes display highly divergent allosteric properties, especially concerning their basal activity, ADP activation and GTP inhibition. On the other hand, both enzymes are thought to predominantly localize in the mitochondrial matrix, even though alternative localizations have been proposed. To further study the subcellular localization of the two human iso-enzymes, we created HEK293 cell lines stably over-expressing hGDH1 and hGDH2. In these cell lines, immunofluorescence and enzymatic analyses verified the overexpression of both hGDH1 and hGDH2 iso-enzymes, whereas subcellular fractionation followed by immunoblotting showed their predominantly mitochondrial localization. Given that previous studies have only indirectly compared the subcellular localization of the two iso-enzymes, we co-expressed them tagged with different fluorescent dyes (green and red fluorescent protein for hGDH1 and hGDH2, respectively) and found them to co-localize. Despite the wealth of information related to the functional properties of hGDH1 and hGDH2 and the availability of the hGDH1 structure, there is still an ongoing debate concerning their metabolic role and their involvement in disease processes. Data on the localization of hGDHs, as the ones presented here, could contribute to better understanding of the function of these important human enzymes.

Keywords

Human glutamate dehydrogenases (hGDH1 and hGDH2) Localization Human disease Metabolism 

Notes

Acknowledgements

This work would not have been completed without the valuable assistance of Dr. Christina Dimovasili. We would also like to thank Dr. Dimitra Kotzamani and Dr. Maria Savaki for their help with confocal microscopy, Cynthia Manassaki for coordinating the overall project and Rena Skoula for her continuous aid with technical issues. Finally, we cordially acknowledge the vision and inspiration to work in this exciting field of research provided to us by Professor Andreas Plaitakis.

Funding

This work has been supported by intramural grants of the University of Crete, Heraklion, Crete, Greece, through the Special Account for Research - Research Funding Programs: (1) “Structural studies on human glutamate dehydrogenase iso-enzymes” (Grant Code: KA4374), (2) “Knock-out of GLUD1 and GLUD2 genes from human cell lines, using the CRISPR/Cas9 system” (Grant Code: KA4435).

Compliance with Ethical Standards

Conflict of interest

All authors declared that they have no conflict of interest.

References

  1. 1.
    Strecker HJ (1953) Glutamic dehydrogenase. Arch Biochem Biophys 46(1):128–140.  https://doi.org/10.1016/0003-9861(53)90176-3 Google Scholar
  2. 2.
    Hudson R, Daniel R (1993) L-glutamate dehydrogenases: distribution, properties and mechanism. Comp Biochem Physiol B 106(4):767–792Google Scholar
  3. 3.
    Plaitakis A, Zaganas I (2001) Regulation of human glutamate dehydrogenases: implications for glutamate, ammonia and energy metabolism in brain. J Neurosci Res 66(5):899–908.  https://doi.org/10.1002/jnr.10054 Google Scholar
  4. 4.
    Hutson SM, Islam MM, Zaganas I (2011) Interaction between glutamate dehydrogenase (GDH) and L-leucine catabolic enzymes: intersecting metabolic pathways. Neurochem Int 59(4):518–524.  https://doi.org/10.1016/j.neuint.2011.05.001 Google Scholar
  5. 5.
    Zaganas I, Spanaki C, Plaitakis A (2012) Expression of human GLUD2 glutamate dehydrogenase in human tissues: functional implications. Neurochem Int 61(4):455–462.  https://doi.org/10.1016/j.neuint.2012.06.007 Google Scholar
  6. 6.
    Li M, Li C, Allen A, Stanley CA, Smith TJ (2014) Glutamate dehydrogenase: structure, allosteric regulation, and role in insulin homeostasis. Neurochem Res 39(3):433–445.  https://doi.org/10.1007/s11064-013-1173-2 Google Scholar
  7. 7.
    Fahien LA, MacDonald MJ (2011) The complex mechanism of glutamate dehydrogenase in insulin secretion. Diabetes 60(10):2450–2454.  https://doi.org/10.2337/db10-1150 Google Scholar
  8. 8.
    McKenna M, Stridh M, McNair L, Sonnewald U, Waagepetersen H, Schousboe A (2016) Glutamate oxidation in astrocytes: roles of glutamate dehydrogenase and aminotransferases. J Neurosci Res 94(12):1561–1571.  https://doi.org/10.1002/jnr.23908 Google Scholar
  9. 9.
    McKenna MC (2011) Glutamate dehydrogenase in brain mitochondria: do lipid modifications and transient metabolon formation influence enzyme activity? Neurochem Int 59(4):525–533.  https://doi.org/10.1016/j.neuint.2011.07.003 Google Scholar
  10. 10.
    Spanaki C, Plaitakis A (2012) The role of glutamate dehydrogenase in mammalian ammonia metabolism. Neurotox Res 21(1):117–127.  https://doi.org/10.1007/s12640-011-9285-4 Google Scholar
  11. 11.
    Lorin S, Tol MJ, Bauvy C, Strijland A, Poüs C, Verhoeven AJ, Codogno P, Meijer AJ (2013) Glutamate dehydrogenase contributes to leucine sensing in the regulation of autophagy. Autophagy 9(6):850–860.  https://doi.org/10.4161/auto.24083 Google Scholar
  12. 12.
    Shashidharan P, Michaelidis TM, Robakis NK, Kresovali A, Papamatheakis J, Plaitakis A (1994) Novel human glutamate dehydrogenase expressed in neural and testicular tissues and encoded by an X-linked intronless gene. J Biol Chem 269(24):16971–16976Google Scholar
  13. 13.
    Zaganas IV, Kanavouras K, Borompokas N, Arianoglou G, Dimovasili C, Latsoudis H, Vlassi M, Mastorodemos V (2014) The odyssey of a young gene: structure–function studies in human glutamate dehydrogenases reveal evolutionary-acquired complex allosteric regulation mechanisms. Neurochem Res 39(3):471–486.  https://doi.org/10.1007/s11064-014-1251-0 Google Scholar
  14. 14.
    Burki F, Kaessmann H (2004) Birth and adaptive evolution of a hominoid gene that supports high neurotransmitter flux. Nat Genet 36:1061.  https://doi.org/10.1038/ng1431 https://www.nature.com/articles/ng1431#supplementary-information
  15. 15.
    Varki A (2004) How to make an ape brain. Nat Genet 36:1034.  https://doi.org/10.1038/ng1004-1034 Google Scholar
  16. 16.
    Shashidharan P, Plaitakis A (2014) The discovery of human of GLUD2 glutamate dehydrogenase and its implications for cell function in health and disease. Neurochem Res 39(3):460–470.  https://doi.org/10.1007/s11064-013-1227-5 Google Scholar
  17. 17.
    Zaganas I, Spanaki C, Karpusas M, Plaitakis A (2002) Substitution of Ser for Arg-443 in the regulatory domain of human housekeeping (GLUD1) glutamate dehydrogenase virtually abolishes basal activity and markedly alters the activation of the enzyme by adp and l-Leucine. J Biol Chem 277(48):46552–46558.  https://doi.org/10.1074/jbc.M208596200 Google Scholar
  18. 18.
    Zaganas I, Plaitakis A (2002) Single amino acid substitution (G456A) in the vicinity of the GTP binding domain of human housekeeping glutamate dehydrogenase markedly attenuates GTP inhibition and abolishes the cooperative behavior of the enzyme. J Biol Chem 277(29):26422–26428.  https://doi.org/10.1074/jbc.M200022200 Google Scholar
  19. 19.
    Shashidharan P, Clarke DD, Ahmed N, Moschonas N, Plaitakis A (1997) Nerve tissue-specific human glutamate dehydrogenase that is thermolabile and highly regulated by ADP. J Neurochem 68(5):1804–1811.  https://doi.org/10.1046/j.1471-4159.1997.68051804.x Google Scholar
  20. 20.
    Zaganas I, Kanavouras K, Mastorodemos V, Latsoudis H, Spanaki C, Plaitakis A (2009) The human GLUD2 glutamate dehydrogenase: localization and functional aspects. Neurochem Int 55(1):52–63.  https://doi.org/10.1016/j.neuint.2009.03.001 Google Scholar
  21. 21.
    Engel PC (2014) Glutamate dehydrogenases: the why and how of coenzyme specificity. Neurochem Res 39(3):426–432.  https://doi.org/10.1007/s11064-013-1089-x Google Scholar
  22. 22.
    Bailey J, Bell ET, Bell JE (1982) Regulation of bovine glutamate dehydrogenase. The effects of pH and ADP. J Biol Chem 257(10):5579–5583Google Scholar
  23. 23.
    Yudkoff M (1997) Brain metabolism of branched-chain amino acids. Glia 21 (1):92–98.  https://doi.org/10.1002/(SICI)1098-1136(199709)21:1%3C92::AID-GLIA10%3E3.0.CO;2-W Google Scholar
  24. 24.
    Cooper AJL (2012) The role of glutamine synthetase and glutamate dehydrogenase in cerebral ammonia homeostasis. Neurochem Res 37(11):2439–2455.  https://doi.org/10.1007/s11064-012-0803-4 Google Scholar
  25. 25.
    Smith HQ, Li C, Stanley CA, Smith TJ (2017) Glutamate dehydrogenase, a complex enzyme at a crucial metabolic branch point. Neurochem Res.  https://doi.org/10.1007/s11064-017-2428-0 Google Scholar
  26. 26.
    Marcaggi P, Coles JA (2001) Ammonium in nervous tissue: transport across cell membranes, fluxes from neurons to glial cells, and role in signalling. Prog Neurobiol 64(2):157–183.  https://doi.org/10.1016/S0301-0082(00)00043-5 Google Scholar
  27. 27.
    Adeva MM, Souto G, Blanco N, Donapetry C (2012) Ammonium metabolism in humans. Metab Clin Exp 61(11):1495–1511.  https://doi.org/10.1016/j.metabol.2012.07.007 Google Scholar
  28. 28.
    Zaganas I, Pajęcka K, Wendel Nielsen C, Schousboe A, Waagepetersen HS, Plaitakis A (2013) The effect of pH and ADP on ammonia affinity for human glutamate dehydrogenases. Metab Brain Dis 28(2):127–131.  https://doi.org/10.1007/s11011-013-9382-6 Google Scholar
  29. 29.
    Tsacopoulos M, Poitry-Yamate CL, Poitry S (1997) Ammonium and glutamate released by neurons are signals regulating the nutritive function of a glial cell. J Neurosci 17(7):2383–2390Google Scholar
  30. 30.
    Spinelli JB, Yoon H, Ringel AE, Jeanfavre S, Clish CB, Haigis MC (2017) Metabolic recycling of ammonia via glutamate dehydrogenase supports breast cancer biomass. Science 358(6365):941–946.  https://doi.org/10.1126/science.aam9305 Google Scholar
  31. 31.
    Li M, Li C, Allen A, Stanley CA, Smith TJ (2012) The structure and allosteric regulation of mammalian glutamate dehydrogenase. Arch Biochem Biophys 519(2):69–80.  https://doi.org/10.1016/j.abb.2011.10.015 Google Scholar
  32. 32.
    Mastorodemos V, Zaganas I, Spanaki C, Bessa M, Plaitakis A (2005) Molecular basis of human glutamate dehydrogenase regulation under changing energy demands. J Neurosci Res 79(1–2):65–73.  https://doi.org/10.1002/jnr.20353 Google Scholar
  33. 33.
    Kanavouras K, Mastorodemos V, Borompokas N, Spanaki C, Plaitakis A (2007) Properties and molecular evolution of human GLUD2 (neural and testicular tissue-specific) glutamate dehydrogenase. J Neurosci Res 85(5):1101–1109.  https://doi.org/10.1002/jnr.21197 Google Scholar
  34. 34.
    Plaitakis A, Metaxari M, Shashidharan P (2000) Nerve tissue-specific (GLUD2) and housekeeping (GLUD1) human glutamate dehydrogenases are regulated by distinct allosteric mechanisms. J Neurochem 75(5):1862–1869.  https://doi.org/10.1046/j.1471-4159.2000.0751862.x Google Scholar
  35. 35.
    Smith TJ, Schmidt T, Fang J, Wu J, Siuzdak G, Stanley CA (2002) The structure of apo human glutamate dehydrogenase details subunit communication and allostery. J Mol Biol 318(3):765–777.  https://doi.org/10.1016/S0022-2836(02)00161-4 Google Scholar
  36. 36.
    Peterson PE, Pierce J, Smith TJ (1997) Crystallization and characterization of bovine liver glutamate dehydrogenase. J Struct Biol 120(1):73–77.  https://doi.org/10.1006/jsbi.1997.3899 Google Scholar
  37. 37.
    Peterson PE, Smith TJ (1999) The structure of bovine glutamate dehydrogenase provides insights into the mechanism of allostery. Structure 7(7):769–782.  https://doi.org/10.1016/S0969-2126(99)80101-4 Google Scholar
  38. 38.
    Smith TJ, Peterson PE, Schmidt T, Fang J, Stanley CA (2001) Structures of bovine glutamate dehydrogenase complexes elucidate the mechanism of purine regulation 1 Edited by I. A. Wilson. J Mol Biol 307(2):707–720.  https://doi.org/10.1006/jmbi.2001.4499 Google Scholar
  39. 39.
    Li M, Li C, Allen A, Stanley CA, Smith TJ (2011) The structure and allosteric regulation of glutamate dehydrogenase. Neurochem Int 59(4):445–455.  https://doi.org/10.1016/j.neuint.2010.10.017 Google Scholar
  40. 40.
    Mastorodemos V, Kanavouras K, Sundaram S, Providaki M, Petraki Z, Kokkinidis M, Zaganas I, Logothetis DE, Plaitakis A (2015) Side-chain interactions in the regulatory domain of human glutamate dehydrogenase determine basal activity and regulation. J Neurochem 133(1):73–82.  https://doi.org/10.1111/jnc.13019 Google Scholar
  41. 41.
    Banerjee S, Schmidt T, Fang J, Stanley CA, Smith TJ (2003) Structural studies on ADP activation of mammalian glutamate dehydrogenase and the evolution of regulation. Biochemistry 42(12):3446–3456.  https://doi.org/10.1021/bi0206917 Google Scholar
  42. 42.
    Spanaki C, Kotzamani D, Petraki Z, Drakos E, Plaitakis A (2015) Expression of human GLUD1 and GLUD2 glutamate dehydrogenases in steroid producing tissues. Mol Cell Endocrinol 415:1–11.  https://doi.org/10.1016/j.mce.2015.07.020 Google Scholar
  43. 43.
    Spanaki C, Zaganas I, Kleopa KA, Plaitakis A (2010) Human GLUD2 glutamate dehydrogenase is expressed in neural and testicular supporting cells. J Biol Chem 285(22):16748–16756.  https://doi.org/10.1074/jbc.M109.092999 Google Scholar
  44. 44.
    Spanaki C, Kotzamani D, Petraki Z, Drakos E, Plaitakis A (2014) Heterogeneous cellular distribution of glutamate dehydrogenase in brain and in non-neural tissues. Neurochem Res 39(3):500–515.  https://doi.org/10.1007/s11064-013-1235-5 Google Scholar
  45. 45.
    Hull J, Usmari Moraes M, Brookes E, Love S, Conway ME (2018) Distribution of the branched-chain α-ketoacid dehydrogenase complex E1α subunit and glutamate dehydrogenase in the human brain and their role in neuro-metabolism. Neurochem Int 112:49–58.  https://doi.org/10.1016/j.neuint.2017.10.014 Google Scholar
  46. 46.
    Spanaki C, Kotzamani D, Kleopa K, Plaitakis A (2016) Evolution of GLUD2 glutamate dehydrogenase allows expression in human cortical neurons. Mol Neurobiol 53(8):5140–5148.  https://doi.org/10.1007/s12035-015-9429-2 Google Scholar
  47. 47.
    Nissen JD, Lykke K, Bryk J, Stridh MH, Zaganas I, Skytt DM, Schousboe A, Bak LK, Enard W, Pääbo S, Waagepetersen HS (2017) Expression of the human isoform of glutamate dehydrogenase, hGDH2, augments TCA cycle capacity and oxidative metabolism of glutamate during glucose deprivation in astrocytes. Glia 65(3):474–488.  https://doi.org/10.1002/glia.23105 Google Scholar
  48. 48.
    Salganicoff L, Robertis ED (1965) Subcellular distribution of the enzymes of the glutamic acid, glutamine and γ-aminobutyric acid cycles in rat brain*. J Neurochem 12(4):287–309.  https://doi.org/10.1111/j.1471-4159.1965.tb06766.x Google Scholar
  49. 49.
    Aoki C, Milner TA, Berger SB, Sheu KFR, Blass JP, Pickel VM (1987) Glial glutamate dehydrogenase: ultrastructural localization and regional distribution in relation to the mitochondrial enzyme, cytochrome oxidase. J Neurosci Res 18(2):305–318.  https://doi.org/10.1002/jnr.490180207 Google Scholar
  50. 50.
    Rothe F, Brosz M, Storm-Mathisen J (1994) Quantitative ultrastructural localization of glutamate dehydrogenase in the rat cerebellar cortex. Neuroscience 62(4):1133–1146.  https://doi.org/10.1016/0306-4522(94)90349-2 Google Scholar
  51. 51.
    Colon AD, Plaitakis A, Perakis A, Berl S, Clarke DD (1986) Purification and characterization of a soluble and a particulate glutamate dehydrogenase from rat brain. J Neurochem 46(6):1811–1819.  https://doi.org/10.1111/j.1471-4159.1986.tb08500.x Google Scholar
  52. 52.
    Rajas F, Rousset B (1993) A membrane-bound form of glutamate dehydrogenase possesses an ATP-dependent high-affinity microtubule-binding activity. Biochem J 295(2):447–455.  https://doi.org/10.1042/bj2950447 Google Scholar
  53. 53.
    Lee W, Shin S, Cho S, Park J (1999) Purification and characterization of glutamate dehydrogenase as another isoprotein binding to the membrane of rough endoplasmic reticulum. J Cell Biochem 76(2):244–253Google Scholar
  54. 54.
    Pragnya P, Mrutyunjay S, Divya S, Shashibhal Matacharan P, Madan Mohan C, Jogeswar Satchidananda P (2011) Characterization of nuclear glutamate dehydrogenase of chicken liver and brain. Protein Pept Lett 18(12):1194–1203.  https://doi.org/10.2174/092986611797642698 Google Scholar
  55. 55.
    di Prisco G, Banay-Schwartz M, Strecker HJ (1968) Glutamate dehydrogenase in nuclear and mitochondrial fractions of rat liver. Biochem Biophys Res Commun 33(4):606–612.  https://doi.org/10.1016/0006-291X(68)90339-2 Google Scholar
  56. 56.
    Lai J, Sheu K, Kim Y, Clarke D, Blass J (1986) The subcellular localization of glutamate dehydrogenase (GDH): is GDH a marker for mitochondria in brain? Neurochem Res 11(5):733–744Google Scholar
  57. 57.
    Plaitakis A, Kalef-Ezra E, Kotzamani D, Zaganas I, Spanaki C (2017) The glutamate dehydrogenase pathway and its roles in cell and tissue biology in health and disease. Biology 6(1):11Google Scholar
  58. 58.
    Mastorodemos V, Kotzamani D, Zaganas I, Arianoglou G, Latsoudis H, Plaitakis A (2009) Human GLUD1 and GLUD2 glutamate dehydrogenase localize to mitochondria and endoplasmic reticulum. Biochem Cell Biol 87(3):505–516.  https://doi.org/10.1139/O09-008 Google Scholar
  59. 59.
    Rosso L, Marques AC, Reichert AS, Kaessmann H (2008) Mitochondrial targeting adaptation of the hominoid-specific glutamate dehydrogenase driven by positive darwinian selection. PLOS Genet 4(8):e1000150.  https://doi.org/10.1371/journal.pgen.1000150 Google Scholar
  60. 60.
    Kalef-Ezra E, Kotzamani D, Zaganas I, Katrakili N, Plaitakis A, Tokatlidis K (2016) Import of a major mitochondrial enzyme depends on synergy between two distinct helices of its presequence. Biochem J 473(18):2813–2829.  https://doi.org/10.1042/bcj20160535 Google Scholar
  61. 61.
    Ebrahimi-Fakhari D, Saffari A, Wahlster L, Di Nardo A, Turner D, Lewis Tommy L, Conrad C, Rothberg Jonathan M, Lipton Jonathan O, Kölker S, Hoffmann Georg F, Han M-J, Polleux F, Sahin M (2016) Impaired mitochondrial dynamics and mitophagy in neuronal models of tuberous sclerosis complex. Cell Rep 17(4):1053–1070.  https://doi.org/10.1016/j.celrep.2016.09.054 Google Scholar
  62. 62.
    Karnati S, Lüers G, Pfreimer S, Baumgart-Vogt E (2013) Mammalian SOD2 is exclusively located in mitochondria and not present in peroxisomes. Histochem Cell Biol 140(2):105–117.  https://doi.org/10.1007/s00418-013-1099-4 Google Scholar
  63. 63.
    Lin C-C, Kurashige M, Liu Y, Terabayashi T, Ishimoto Y, Wang T, Choudhary V, Hobbs R, Liu L-K, Lee P-H, Outeda P, Zhou F, Restifo NP, Watnick T, Kawano H, Horie S, Prinz W, Xu H, Menezes LF, Germino GG (2018) A cleavage product of Polycystin-1 is a mitochondrial matrix protein that affects mitochondria morphology and function when heterologously expressed. Sci Rep 8(1):2743.  https://doi.org/10.1038/s41598-018-20856-6 Google Scholar
  64. 64.
    Carobbio S, Ishihara H, Fernandez-Pascual S, Bartley C, Martin-Del-Rio R, Maechler P (2004) Insulin secretion profiles are modified by overexpression of glutamate dehydrogenase in pancreatic islets. Diabetologia 47(2):266–276.  https://doi.org/10.1007/s00125-003-1306-2 Google Scholar
  65. 65.
    Tanizawa Y, Nakai K, Sasaki T, Anno T, Ohta Y, Inoue H, Matsuo K, Koga M, Furukawa S, Oka Y (2002) Unregulated elevation of glutamate dehydrogenase activity induces glutamine-stimulated insulin secretion. Identification and characterization of a GLUD1 gene mutation and insulin secretion studies with MIN6 cells overexpressing the mutant glutamate dehydrogenase. Diabetes 51(3):712–717.  https://doi.org/10.2337/diabetes.51.3.712 Google Scholar
  66. 66.
    Anno T, Uehara S, Katagiri H, Ohta Y, Ueda K, Mizuguchi H, Moriyama Y, Oka Y, Tanizawa Y (2004) Overexpression of constitutively activated glutamate dehydrogenase induces insulin secretion through enhanced glutamate oxidation. Am J Physiol-Endocrinol Metab 286(2):E280–E285.  https://doi.org/10.1152/ajpendo.00380.2003 Google Scholar
  67. 67.
    Bao X, Pal R, Hascup KN, Wang Y, Wang W-T, Xu W, Hui D, Agbas A, Wang X, Michaelis ML, Choi I-Y, Belousov AB, Gerhardt GA, Michaelis EK (2009) Transgenic expression of Glud1 (glutamate dehydrogenase 1) in neurons: in vivo model of enhanced glutamate release, altered synaptic plasticity, and selective neuronal vulnerability. J Neurosci 29(44):13929–13944.  https://doi.org/10.1523/jneurosci.4413-09.2009 Google Scholar
  68. 68.
    Li Q, Guo S, Jiang X, Bryk J, Naumann R, Enard W, Tomita M, Sugimoto M, Khaitovich P, Pääbo S (2016) Mice carrying a human GLUD2 gene recapitulate aspects of human transcriptome and metabolome development. Proc Natl Acad Sci 113(19):5358–5363.  https://doi.org/10.1073/pnas.1519261113 Google Scholar
  69. 69.
    Wang X, Bao X, Pal R, Agbas A, Michaelis EK (2010) Transcriptomic responses in mouse brain exposed to chronic excess of the neurotransmitter glutamate. BMC Genom 11(1):360.  https://doi.org/10.1186/1471-2164-11-360 Google Scholar
  70. 70.
    Michaelis EK, Wang X, Pal R, Bao X, Hascup KN, Wang Y, Wang WT, Hui D, Agbas A, Choi IY, Belousov A, Gerhardt GA (2011) Neuronal Glud1 (glutamate dehydrogenase 1) over-expressing mice: increased glutamate formation and synaptic release, loss of synaptic activity, and adaptive changes in genomic expression. Neurochem Int 59(4):473–481.  https://doi.org/10.1016/j.neuint.2011.03.003 Google Scholar
  71. 71.
    Hascup KN, Bao X, Hascup ER, Hui D, Xu W, Pomerleau F, Huettl P, Michaelis ML, Michaelis EK, Gerhardt GA (2011) Differential levels of glutamate dehydrogenase 1 (GLUD1) in Balb/c and C57BL/6 mice and the effects of overexpression of the Glud1 gene on glutamate release in striatum. ASN Neuro 3(2):AN20110005.  https://doi.org/10.1042/an20110005 Google Scholar
  72. 72.
    Choi I-Y, Lee P, Wang W-T, Hui D, Wang X, Brooks WM, Michaelis EK (2014) Metabolism changes during aging in the hippocampus and striatum of Glud1 (glutamate dehydrogenase 1) transgenic mice. Neurochem Res 39(3):446–455.  https://doi.org/10.1007/s11064-014-1239-9 Google Scholar
  73. 73.
    Wang X, Patel ND, Hui D, Pal R, Hafez MM, Sayed-Ahmed MM, Al-Yahya AA, Michaelis EK (2014) Gene expression patterns in the hippocampus during the development and aging of Glud1(glutamate dehydrogenase 1) transgenic and wild type mice. BMC Neurosci 15(1):37.  https://doi.org/10.1186/1471-2202-15-37 Google Scholar
  74. 74.
    Plaitakis A, Zaganas I, Spanaki C (2013) Deregulation of glutamate dehydrogenase in human neurologic disorders. J Neurosci Res 91(8):1007–1017.  https://doi.org/10.1002/jnr.23176 Google Scholar
  75. 75.
    Kelly A, Stanley C (2001) Disorders of glutamate metabolism. Dev Disabil Res Rev 7(4):287–295Google Scholar
  76. 76.
    Palladino AA, Stanley CA (2010) The hyperinsulinism/hyperammonemia syndrome. Rev Endocr Metab Disord 11(3):171–178.  https://doi.org/10.1007/s11154-010-9146-0 Google Scholar
  77. 77.
    Stanley CA, Lieu YK, Hsu BYL, Burlina AB, Greenberg CR, Hopwood NJ, Perlman K, Rich BH, Zammarchi E, Poncz M (1998) Hyperinsulinism and hyperammonemia in infants with regulatory mutations of the glutamate dehydrogenase gene. N Engl J Med 338(19):1352–1357.  https://doi.org/10.1056/nejm199805073381904 Google Scholar
  78. 78.
    Tran C, Konstantopoulou V, Mecjia M, Perlman K, Mercimek-Mahmutoglu S, Kronick Jonathan B (2015) Hyperinsulinemic hypoglycemia: think of hyperinsulinism/hyperammonemia (HI/HA) syndrome caused by mutations in the GLUD1 gene. J Pediatr Endocrinol Metab.  https://doi.org/10.1515/jpem-2014-0441 Google Scholar
  79. 79.
    Aka S, Alanay Y, Boodhansingh K, Stanley C, Semiz S (2016) Seizures and diagnostic difficulties in hyperinsulinism-hyperammonemia syndrome. Turk J Pediatr 58(5):541–544.  https://doi.org/10.24953/turkjped.2016.05.014 Google Scholar
  80. 80.
    Ninković D, Sarnavka V, Bašnec A, Ćuk M, Ramadža Danijela P, Fumić K, Kušec V, Santer R, Barić I (2016) Hyperinsulinism-hyperammonemia syndrome: a de novo mutation of the GLUD1 gene in twins and a review of the literature. J Pediatr Endocrinol Metab.  https://doi.org/10.1515/jpem-2016-0086 Google Scholar
  81. 81.
    Kapoor RR, Flanagan SE, Arya VB, Shield JP, Ellard S, Hussain K (2013) Clinical and molecular characterisation of 300 patients with congenital hyperinsulinism. Eur J Endocrinol 168(4):557–564.  https://doi.org/10.1530/eje-12-0673 Google Scholar
  82. 82.
    Corrêa-Giannella ML, Freire DS, Cavaleiro AM, Fortes MAZ, Giorgi RR, Pereira MAA (2012) Hyperinsulinism/hyperammonemia (HI/HA) syndrome due to a mutation in the glutamate dehydrogenase gene. Arq Bras Endocrinol Metabol 56:485–489Google Scholar
  83. 83.
    Aso K, Okano Y, Takeda T, Sakamoto O, Ban K, Iida K, Yamano T, Shintaku H (2011) Spectrum of glutamate dehydrogenase mutations in Japanese patients with congenital hyperinsulinism and hyperammonemia syndrome. Osaka City Med J 57(1):1–9Google Scholar
  84. 84.
    Diao C, Chen S, Xiao X, Wang T, Sun X, Wang O, Song H, Zhang Y, Yu M, Zhang Q, Wang H (2010) Two unrelated chinese patients with hyperinsulinism/hyperammonemia (HI/HA) syndrome due to mutations in glutamate dehydrogenase gene. J Pediatr Endocrinol Metab.  https://doi.org/10.1515/JPEM.2010.23.7.733 Google Scholar
  85. 85.
    Kapoor RR, Flanagan SE, Fulton P, Chakrapani A, Chadefaux B, Ben-Omran T, Banerjee I, Shield JP, Ellard S, Hussain K (2009) Hyperinsulinism–hyperammonaemia syndrome: novel mutations in the GLUD1 gene and genotype–phenotype correlations. Eur J Endocrinol 161(5):731–735.  https://doi.org/10.1530/eje-09-0615 Google Scholar
  86. 86.
    de Lonlay P, Benelli C, Fouque F, Ganguly A, Aral B, Dionisi-Vici C, Touati G, Heinrichs C, Rabier D, Kamoun P, Robert J-J, Stanley C, Saudubray J-M (2001) Hyperinsulinism and hyperammonemia syndrome: report of twelve unrelated patients. Pediatr Res 50:353.  https://doi.org/10.1203/00006450-200109000-00010 Google Scholar
  87. 87.
    Santer R, Kinner M, Passarge M, Superti-Furga A, Mayatepek E, Meissner T, Schneppenheim R, Schaub J (2001) Novel missense mutations outside the allosteric domain of glutamate dehydrogenase are prevalent in European patients with the congenital hyperinsulinism-hyperammonemia syndrome. Hum Genet 108(1):66–71.  https://doi.org/10.1007/s004390000432 Google Scholar
  88. 88.
    Yasuda K, Koda N, Kadowaki H, Ogawa Y, Kimura S, Kadowaki T, Akanuma Y (2001) A Japanese case of congenital hyperinsulinism with hyperammonemia due to a mutation in glutamate dehydrogenase (GLUD1) gene. Intern Med 40(1):32–37.  https://doi.org/10.2169/internalmedicine.40.32 Google Scholar
  89. 89.
    Barrosse-Antle M, Su C, Chen P, Boodhansingh KE, Smith TJ, Stanley CA, De León DD, Li C (2017) A severe case of hyperinsulinism due to hemizygous activating mutation of glutamate dehydrogenase. Pediatr Diabetes 18(8):911–916.  https://doi.org/10.1111/pedi.12507 Google Scholar
  90. 90.
    Snider KE, Becker S, Boyajian L, Shyng SL, MacMullen C, Hughes N, Ganapathy K, Bhatti T, Stanley CA, Ganguly A (2013) Genotype and phenotype correlations in 417 children with congenital hyperinsulinism. J Clin Endocrinol Metab 98(2):E355–E363.  https://doi.org/10.1210/jc.2012-2169 Google Scholar
  91. 91.
    Stanley CA (2009) Regulation of glutamate metabolism and insulin secretion by glutamate dehydrogenase in hypoglycemic children1–4. Am J Clin Nutr 90(3):862S–866S.  https://doi.org/10.3945/ajcn.2009.27462AA Google Scholar
  92. 92.
    Kibbey RG, Choi CS, Lee H-Y, Cabrera O, Pongratz RL, Zhao X, Birkenfeld AL, Li C, Berggren P-O, Stanley C, Shulman GI (2014) Mitochondrial GTP insensitivity contributes to hypoglycemia in hyperinsulinemia hyperammonemia by inhibiting glucagon release. Diabetes 63(12):4218–4229.  https://doi.org/10.2337/db14-0783 Google Scholar
  93. 93.
    Andersson LE, Shcherbina L, Al-Majdoub M, Vishnu N, Arroyo CB, Carrara JA, Wollheim CB, Fex M, Mulder H, Wierup N, Spégel P (2017) Glutamine-elicited secretion of glucagon-like peptide 1 (GLP-1) is governed by an activated glutamate dehydrogenase. Diabetes.  https://doi.org/10.2337/db16-1441 Google Scholar
  94. 94.
    Göhring I, Mulder H (2012) Glutamate dehydrogenase, insulin secretion, and type 2 diabetes: a new means to protect the pancreatic β-cell? J Endocrinol 212(3):239–242.  https://doi.org/10.1530/joe-11-0481 Google Scholar
  95. 95.
    Pournourmohammadi S, Grimaldi M, Stridh MH, Lavallard V, Waagepetersen HS, Wollheim CB, Maechler P (2017) Epigallocatechin-3-gallate (EGCG) activates AMPK through the inhibition of glutamate dehydrogenase in muscle and pancreatic ß-cells: a potential beneficial effect in the pre-diabetic state? Int J Biochem Cell Biol 88:220–225.  https://doi.org/10.1016/j.biocel.2017.01.012 Google Scholar
  96. 96.
    Stanley CA (2011) Two genetic forms of hyperinsulinemic hypoglycemia caused by dysregulation of glutamate dehydrogenase. Neurochem Int 59(4):465–472.  https://doi.org/10.1016/j.neuint.2010.11.017 Google Scholar
  97. 97.
    De Lonlay P, Giurgea I, Sempoux C, Touati G, Jaubert F, Rahier J, Ribeiro M, Brunelle F, Nihoul-Fékété C, Robert J-J, Saudubray J-M, Stanley C, Bellanné-Chantelot C (2005) Dominantly inherited hyperinsulinaemic hypoglycaemia. J Inherit Metab Dis 28(3):267–276.  https://doi.org/10.1007/s10545-005-7057-0 Google Scholar
  98. 98.
    Li C, Chen P, Palladino A, Narayan S, Russell LK, Sayed S, Xiong G, Chen J, Stokes D, Butt YM, Jones PM, Collins HW, Cohen NA, Cohen AS, Nissim I, Smith TJ, Strauss AW, Matschinsky FM, Bennett MJ, Stanley CA (2010) Mechanism of hyperinsulinism in short-chain 3-hydroxyacyl-CoA dehydrogenase deficiency involves activation of glutamate dehydrogenase. J Biol Chem 285(41):31806–31818.  https://doi.org/10.1074/jbc.M110.123638 Google Scholar
  99. 99.
    Narayan SB, Master SR, Sireci AN, Bierl C, Stanley PE, Li C, Stanley CA, Bennett MJ (2012) Short-chain 3-hydroxyacyl-coenzyme a dehydrogenase associates with a protein super-complex integrating multiple metabolic pathways. PLoS ONE 7(4):e35048.  https://doi.org/10.1371/journal.pone.0035048 Google Scholar
  100. 100.
    Bahi-Buisson N, Roze E, Dionisi C, Escande F, Valayannopoulos V, Feillet F, Heinrichs C (2008) Neurological aspects of hyperinsulinism–hyperammonaemia syndrome. Dev Med Child Neurol 50(12):945–949.  https://doi.org/10.1111/j.1469-8749.2008.03114.x Google Scholar
  101. 101.
    Kelly A, Stanley CA (2008) Neurological aspects in hyperinsulinism-hyperammonaemia syndrome. Dev Med Child Neurol 50(12):888–888.  https://doi.org/10.1111/j.1469-8749.2008.03149.x Google Scholar
  102. 102.
    Nakano K, Kobayashi K, Okano Y, Aso K, Ohtsuka Y (2012) Intractable absence seizures in hyperinsulinism-hyperammonemia syndrome. Pediatr Neurol 47(2):119–122.  https://doi.org/10.1016/j.pediatrneurol.2012.04.019 Google Scholar
  103. 103.
    Balasubramaniam S, Kapoor R, Yeow J, Lim P, Flanagan S, Ellard S, Hussain K (2011) Biochemical evaluation of an infant with hypoglycemia resulting from a novel de novo mutation of the GLUD1 gene and hyperinsulinism-hyperammonemia syndrome. J Pediatr Endocrinol Metab 24(7–8):573–577Google Scholar
  104. 104.
    Treiman DM (2001) GABAergic mechanisms in epilepsy. Epilepsia 42(Suppl 3):8–12Google Scholar
  105. 105.
    Shetty AK, Upadhya D (2016) GABA-ergic cell therapy for epilepsy: advances, limitations and challenges. Neurosci Biobehav Rev 62:35–47.  https://doi.org/10.1016/j.neubiorev.2015.12.014 Google Scholar
  106. 106.
    Levy LM, Hallett M (2002) Impaired brain GABA in focal dystonia. Ann Neurol 51(1):93–101Google Scholar
  107. 107.
    Malthankar-Phatak GH, De Lanerolle N, Eid T, Spencer DD, Behar KL, Spencer SS, Kim JH, Lai JCK (2006) Differential glutamate dehydrogenase (GDH) activity profile in patients with temporal lobe epilepsy. Epilepsia 47(8):1292–1299.  https://doi.org/10.1111/j.1528-1167.2006.00543.x Google Scholar
  108. 108.
    Sherwin A, Quesney F, Gauthier S, Olivier A, Robitaille Y, McQuaid P, Harvey C, van Gelder N (1984) Enzyme changes in actively spiking areas of human epileptic cerebral cortex. Neurology 34(7):927–933Google Scholar
  109. 109.
    Rasgado Lourdes AV, Reyes Guillermo C, Díaz Fernando V (2015) Modulation of brain glutamate dehydrogenase as a tool for controlling seizures. Acta Pharm.  https://doi.org/10.1515/acph-2015-0033 Google Scholar
  110. 110.
    Badawi Y, Pal R, Hui D, Michaelis EK, Shi H (2015) Ischemic tolerance in an in vivo model of glutamate preconditioning. J Neurosci Res 93(4):623–632.  https://doi.org/10.1002/jnr.23517 Google Scholar
  111. 111.
    Kim AY, Baik EJ (2018) Glutamate dehydrogenase as a neuroprotective target against neurodegeneration. Neurochem Res.  https://doi.org/10.1007/s11064-018-2467-1 Google Scholar
  112. 112.
    Kim AY, Jeong K-H, Lee JH, Kang Y, Lee SH, Baik EJ (2017) Glutamate dehydrogenase as a neuroprotective target against brain ischemia and reperfusion. Neuroscience 340:487–500.  https://doi.org/10.1016/j.neuroscience.2016.11.007 Google Scholar
  113. 113.
    Hohnholt MC, Andersen VH, Andersen JV, Christensen SK, Karaca M, Maechler P, Waagepetersen HS (2017) Glutamate dehydrogenase is essential to sustain neuronal oxidative energy metabolism during stimulation. J Cereb Blood Flow Metab.  https://doi.org/10.1177/0271678x17714680 Google Scholar
  114. 114.
    Plaitakis A, Latsoudis H, Kanavouras K, Ritz B, Bronstein JM, Skoula I, Mastorodemos V, Papapetropoulos S, Borompokas N, Zaganas I, Xiromerisiou G, Hadjigeorgiou GM, Spanaki C (2009) Gain-of-function variant in GLUD2 glutamate dehydrogenase modifies Parkinson’s disease onset. Eur J Hum Genet 18:336.  https://doi.org/10.1038/ejhg.2009.179 https://www.nature.com/articles/ejhg2009179#supplementary-information
  115. 115.
    Plaitakis A, Caroscio JT (1987) Abnormal glutamate metabolism in amyotrophic lateral sclerosis. Ann Neurol 22(5):575–579.  https://doi.org/10.1002/ana.410220503 Google Scholar
  116. 116.
    Sorbi S, Tonini S, Giannini E, Piacentini S, Marini P, Amaducci L (1986) Abnormal platelet glutamate dehydrogenase activity and activation in dominant and nondominant olivopontocerebellar atrophy. Ann Neurol 19(3):239–245.  https://doi.org/10.1002/ana.410190304 Google Scholar
  117. 117.
    Plaitakis A (1990) Glutamate dysfunction and selective motor neuron degeneration inamyotrophic lateral sclerosis: a hypothesis. Ann Neurol 28(1):3–8.  https://doi.org/10.1002/ana.410280103 Google Scholar
  118. 118.
    Plaitakis A, Berl S, Yahr MD (1984) Neurological disorders associated with deficiency of glutamate dehydrogenase. Ann Neurol 15(2):144–153.  https://doi.org/10.1002/ana.410150206 Google Scholar
  119. 119.
    Plaitakis A, Nicklas WJ, Desnick RJ (1980) Glutamate dehydrogenase deficiency in three patients with spinocerebellar syndrome. Ann Neurol 7(4):297–303.  https://doi.org/10.1002/ana.410070403 Google Scholar
  120. 120.
    Plaitakis A, Flessas P, Natsiou A, Shashidharan P (1993) Glutamate dehydrogenase deficiency in cerebellar degenerations: clinical, biochemical and molecular genetic aspects. Can J Neurol Sci 20(Suppl 3):S109–S116Google Scholar
  121. 121.
    Burbaeva GS, Boksha IS, Tereshkina EB, Savushkina OK, Starodubtseva LI, Turishcheva MS (2005) Glutamate metabolizing enzymes in prefrontal cortex of Alzheimer’s disease patients. Neurochem Res 30(11):1443–1451.  https://doi.org/10.1007/s11064-005-8654-x Google Scholar
  122. 122.
    Jin L, Li D, Alesi Gina N, Fan J, Kang H-B, Lu Z, Boggon Titus J, Jin P, Yi H, Wright Elizabeth R, Duong D, Seyfried Nicholas T, Egnatchik R, DeBerardinis Ralph J, Magliocca Kelly R, He C, Arellano Martha L, Khoury Hanna J, Shin Dong M, Khuri Fadlo R, Kang S (2015) Glutamate dehydrogenase 1 signals through antioxidant glutathione peroxidase 1 to regulate redox homeostasis and tumor growth. Cancer Cell 27(2):257–270.  https://doi.org/10.1016/j.ccell.2014.12.006 Google Scholar
  123. 123.
    Takeuchi Y, Nakayama Y, Fukusaki E, Irino Y (2018) Glutamate production from ammonia via glutamate dehydrogenase 2 activity supports cancer cell proliferation under glutamine depletion. Biochem Biophys Res Commun 495(1):761–767.  https://doi.org/10.1016/j.bbrc.2017.11.088 Google Scholar
  124. 124.
    Jin L, Chun J, Pan C, Kumar A, Zhang G, Ha Y, Li D, Alesi GN, Kang Y, Zhou L, Yu W-M, Magliocca KR, Khuri FR, Qu C-K, Metallo C, Owonikoko TK, Kang S (2018) The PLAG1-GDH1 axis promotes anoikis resistance and tumor metastasis through CamKK2-AMPK signaling in LKB1-deficient lung cancer. Mol Cell 69(1):87–99.e87.  https://doi.org/10.1016/j.molcel.2017.11.025 Google Scholar
  125. 125.
    Zhang J, Wang G, Mao Q, Li S, Xiong W, Lin Y, Ge J (2016) Glutamate dehydrogenase (GDH) regulates bioenergetics and redox homeostasis in human glioma. Oncotarget 295:799–800Google Scholar
  126. 126.
    Yang C, Sudderth J, Dang T, Bachoo RG, McDonald JG, DeBerardinis RJ (2009) Glioblastoma cells require glutamate dehydrogenase to survive impairments of glucose metabolism or Akt signaling. Can Res 69(20):7986–7993.  https://doi.org/10.1158/0008-5472.Can-09-2266 Google Scholar
  127. 127.
    Waitkus MS, Pirozzi CJ, Moure CJ, Diplas BH, Hansen LJ, Carpenter AB, Yang R, Wang Z, Ingram BO, Karoly ED, Mohney RP, Spasojevic I, McLendon RE, Friedman HS, He Y, Bigner DD, Yan H (2018) Adaptive evolution of the GDH2 allosteric domain promotes gliomagenesis by resolving IDH1R132H-induced metabolic liabilities. Cancer Res 78(1):36–50.  https://doi.org/10.1158/0008-5472.Can-17-1352 Google Scholar
  128. 128.
    Chen R, Nishimura MC, Kharbanda S, Peale F, Deng Y, Daemen A, Forrest WF, Kwong M, Hedehus M, Hatzivassiliou G, Friedman LS, Phillips HS (2014) Hominoid-specific enzyme GLUD2 promotes growth of IDH1R132H glioma. Proc Natl Acad Sci 111(39):14217–14222.  https://doi.org/10.1073/pnas.1409653111 Google Scholar
  129. 129.
    Li M, Allen A, Smith TJ (2007) High throughput screening reveals several new classes of glutamate dehydrogenase inhibitors. Biochemistry 46(51):15089–15102.  https://doi.org/10.1021/bi7018783 Google Scholar
  130. 130.
    Zhu M, Fang J, Zhang J, Zhang Z, Xie J, Yu Y, Ruan JJ, Chen Z, Hou W, Yang G, Su W, Ruan BH (2017) Biomolecular interaction assays identified dual inhibitors of glutaminase and glutamate dehydrogenase that disrupt mitochondrial function and prevent growth of cancer cells. Anal Chem 89(3):1689–1696.  https://doi.org/10.1021/acs.analchem.6b03849 Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Neurology Laboratory, Medical SchoolUniversity of CreteHeraklionGreece
  2. 2.Department of NeurologyUniversity Hospital of HeraklionHeraklionGreece

Personalised recommendations