Advertisement

Neurochemical Research

, Volume 44, Issue 1, pp 258–268 | Cite as

Expression of Hypoxia Inducible Factor 1alpha Is Protein Kinase A-dependent in Primary Cortical Astrocytes Exposed to Severe Hypoxia

  • Prabhu Ramamoorthy
  • Grace Xu
  • Honglian ShiEmail author
Original Paper

Abstract

The hypoxia inducible factor 1 (HIF-1) and the cyclic AMP-responsive element binding protein (CREB) are two transcription factors that have been studied in the context of neuronal survival and neurodegeneration. HIF-1 upregulation and CREB activation have been observed not only in neurons but also in astrocytes under conditions of hypoxia. We hypothesized that activation of CREB regulate HIF-1α expression in the nucleus of cortical astrocytes under in vitro ischemic condition. To test the hypothesis, we determined the effects of inhibiting the CREB activation pathway on the expression of HIF-1α protein in astrocytes exposed to CoCl2 and severe hypoxia (near anoxia, 0.1% O2). The results demonstrated that inhibition of CaMKII and CaMKIV had no effect on both HIF-1α and pCREB expression in cortical astrocytes exposed to CoCl2 and anoxia. In contrast, PKA inhibition lowered the expression of HIF-1α and pCREB expression. Furthermore, the inhibition of PKA but not CaMKII or CaMKIV increased cell death of astrocytes exposed to near anoxia. The results suggest that PKA plays an important role in the cell survival signaling pathways in astrocytes.

Keywords

Brain ischemia CREB HIF-1 PKA CaMK 

Notes

Acknowledgements

This work was supported by in part by KUCR. The authors gratefully thank Ms. Cristina Parra for proofreading the manuscript and Ms. Jiani Chen for the artwork.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Haydon PG, Carmignoto G (2006) Astrocyte control of synaptic transmission and neurovascular coupling. Physiol Rev 86:1009–1031CrossRefGoogle Scholar
  2. 2.
    Dringen R, Pfeiffer B, Hamprecht B (1999) Synthesis of the antioxidant glutathione in neurons: supply by astrocytes of CysGly as precursor for neuronal glutathione. J Neurosci 19:562–569CrossRefGoogle Scholar
  3. 3.
    Krum JM, Mani N, Rosenstein JM (2008) Roles of the endogenous VEGF receptors flt-1 and flk-1 in astroglial and vascular remodeling after brain injury. Exp Neurol 212:108–117CrossRefGoogle Scholar
  4. 4.
    Suzuki T, Sakata H, Kato C, Connor JA, Morita M (2012) Astrocyte activation and wound healing in intact-skull mouse after focal brain injury. Eur J Neurosci 36:3653–3664CrossRefGoogle Scholar
  5. 5.
    Thoren AE, Helps SC, Nilsson M, Sims NR (2005) Astrocytic function assessed from 1 to 14C-acetate metabolism after temporary focal cerebral ischemia in rats. J Cereb Blood Flow Metab 25:440–450CrossRefGoogle Scholar
  6. 6.
    Morizawa YM, Hirayama Y, Ohno N, Shibata S, Shigetomi E, Sui Y, Nabekura J, Sato K, Okajima F, Takebayashi H, Okano H, Koizumi S (2017) Reactive astrocytes function as phagocytes after brain ischemia via ABCA1-mediated pathway. Nat Commun 8:28CrossRefGoogle Scholar
  7. 7.
    Nilsson M, Pekny M (2007) Enriched environment and astrocytes in central nervous system regeneration. J Rehabil Med 39:345–352CrossRefGoogle Scholar
  8. 8.
    Chen X, Zhang X, Liao W, Wan Q (2017) Effect of physical and social components of enriched environment on astrocytes proliferation in rats after cerebral ischemia/reperfusion injury. Neurochem Res 42:1308–1316CrossRefGoogle Scholar
  9. 9.
    Ruscher K, Freyer D, Karsch M, Isaev N, Megow D, Sawitzki B, Priller J, Dirnagl U, Meisel A (2002) Erythropoietin is a paracrine mediator of ischemic tolerance in the brain: evidence from an in vitro model. J Neurosci 22:10291–10301CrossRefGoogle Scholar
  10. 10.
    Guo S, Bragina O, Xu Y, Cao Z, Chen H, Zhou B, Morgan M, Lin Y, Jiang BH, Liu KJ, Shi H (2008) Glucose up-regulates HIF-1 alpha expression in primary cortical neurons in response to hypoxia through maintaining cellular redox status. J Neurochem 105:1849–1860CrossRefGoogle Scholar
  11. 11.
    Li L, Saliba P, Reischl S, Marti HH, Kunze R (2016) Neuronal deficiency of HIF prolyl 4-hydroxylase 2 in mice improves ischemic stroke recovery in an HIF dependent manner. Neurobiol Dis 91:221–235CrossRefGoogle Scholar
  12. 12.
    Barteczek P, Li L, Ernst AS, Bohler LI, Marti HH, Kunze R (2017) Neuronal HIF-1alpha and HIF-2alpha deficiency improves neuronal survival and sensorimotor function in the early acute phase after ischemic stroke. J Cereb Blood Flow Metab 37:291–306CrossRefGoogle Scholar
  13. 13.
    Hirayama Y, Ikeda-Matsuo Y, Notomi S, Enaida H, Kinouchi H, Koizumi S (2015) Astrocyte-mediated ischemic tolerance. J Neurosci 35:3794–3805CrossRefGoogle Scholar
  14. 14.
    Hirayama Y, Koizumi S (2017) Hypoxia-independent mechanisms of HIF-1alpha expression in astrocytes after ischemic preconditioning. Glia 65:523–530CrossRefGoogle Scholar
  15. 15.
    Na JI, Na JY, Choi WY, Lee MC, Park MS, Choi KH, Lee JK, Kim KT, Park JT, Kim HS (2015) The HIF-1 inhibitor YC-1 decreases reactive astrocyte formation in a rodent ischemia model. Am J Transl Res 7:751–760Google Scholar
  16. 16.
    Shaywitz AJ, Greenberg ME (1999) CREB: a stimulus-induced transcription factor activated by a diverse array of extracellular signals. Annu Rev Biochem 68:821–861CrossRefGoogle Scholar
  17. 17.
    Jin K, Mao XO, Simon RP, Greenberg DA (2001) Cyclic AMP response element binding protein (CREB) and CREB binding protein (CBP) in global cerebral ischemia. J Mol Neurosci 16:49–56CrossRefGoogle Scholar
  18. 18.
    Irving EA, Barone FC, Reith AD, Hadingham SJ, Parsons AA (2000) Differential activation of MAPK/ERK and p38/SAPK in neurones and glia following focal cerebral ischaemia in the rat. Brain Res Mol Brain Res 77:65–75CrossRefGoogle Scholar
  19. 19.
    Guirao V, Marti-Sistac O, DeGregorio-Rocasolano N, Ponce J, Davalos A, Gasull T (2017) Specific rescue by ortho-hydroxy atorvastatin of cortical GABAergic neurons from previous oxygen/glucose deprivation: role of pCREB. J Neurochem 143:359–374CrossRefGoogle Scholar
  20. 20.
    Sharma D, Biswal SN, Kumar K, Bhardwaj P, Barhwal KK, Kumar A, Hota SK, Chaurasia OP (2017) Estrogen receptor beta mediated neuroprotective efficacy of cicer microphyllum seed extract in global hypoxia. Neurochem Res 42:3474–3489CrossRefGoogle Scholar
  21. 21.
    Sugiura S, Kitagawa K, Omura-Matsuoka E, Sasaki T, Tanaka S, Yagita Y, Matsushita K, Storm DR, Hori M (2004) CRE-mediated gene transcription in the peri-infarct area after focal cerebral ischemia in mice. J Neurosci Res 75:401–407CrossRefGoogle Scholar
  22. 22.
    Chrivia JC, Kwok RP, Lamb N, Hagiwara M, Montminy MR, Goodman RH (1993) Phosphorylated CREB binds specifically to the nuclear protein CBP. Nature 365:855–859CrossRefGoogle Scholar
  23. 23.
    Dimova EY, Jakubowska MM, Kietzmann T (2007) CREB binding to the hypoxia-inducible factor-1 responsive elements in the plasminogen activator inhibitor-1 promoter mediates the glucagon effect. Thromb Haemost 98:296–303CrossRefGoogle Scholar
  24. 24.
    Li J, Zhao SZ, Wang PP, Yu SP, Zheng Z, Xu X (2012) Calcium mediates high glucose-induced HIF-1alpha and VEGF expression in cultured rat retinal Muller cells through CaMKII-CREB pathway. Acta Pharmacol Sin 33:1030–1036CrossRefGoogle Scholar
  25. 25.
    Wu D, Zhau HE, Huang WC, Iqbal S, Habib FK, Sartor O, Cvitanovic L, Marshall FF, Xu Z, Chung LW (2007) cAMP-responsive element-binding protein regulates vascular endothelial growth factor expression: implication in human prostate cancer bone metastasis. Oncogene 26:5070–5077CrossRefGoogle Scholar
  26. 26.
    Thamotharan S, Raychaudhuri N, Tomi M, Shin BC, Devaskar SU (2013) Hypoxic adaptation engages the CBP/CREST-induced coactivator complex of Creb-HIF-1alpha in transactivating murine neuroblastic glucose transporter. Am J Physiol Endocr Metab 304:E583–E598CrossRefGoogle Scholar
  27. 27.
    Parpura V, Fang Y, Basarsky T, Jahn R, Haydon PG (1995) Expression of synaptobrevin II, cellubrevin and syntaxin but not SNAP-25 in cultured astrocytes. FEBS Lett 377:489–492CrossRefGoogle Scholar
  28. 28.
    Tan XL, Huang XY, Gao WX, Zai Y, Huang QY, Luo YJ, Gao YQ (2008) CoCl2-induced expression of p300 promotes neuronal-like PC12 cell damage. Neurosci Lett 441:272–276CrossRefGoogle Scholar
  29. 29.
    Toffoli S, Feron O, Raes M, Michiels C (2007) Intermittent hypoxia changes HIF-1alpha phosphorylation pattern in endothelial cells: unravelling of a new PKA-dependent regulation of HIF-1alpha. Biochim Biophys Acta 1773:1558–1571CrossRefGoogle Scholar
  30. 30.
    Kvietikova I, Wenger RH, Marti HH, Gassmann M (1995) The transcription factors ATF-1 and CREB-1 bind constitutively to the hypoxia-inducible factor-1 (HIF-1) DNA recognition site. Nucleic Acids Res 23:4542–4550CrossRefGoogle Scholar
  31. 31.
    Kvietikova I, Wenger RH, Marti HH, Gassmann M (1997) The hypoxia-inducible factor-1 DNA recognition site is cAMP-responsive. Kidney Intl 51:564–566CrossRefGoogle Scholar
  32. 32.
    Giaccia A, Siim BG, Johnson RS (2003) HIF-1 as a target for drug development. Nat Rev Drug Discov 2:803–811CrossRefGoogle Scholar
  33. 33.
    Bullen JW, Tchernyshyov I, Holewinski RJ, DeVine L, Wu F, Venkatraman V, Kass DL, Cole RN, Van Eyk J, Semenza GL (2016) Protein kinase A-dependent phosphorylation stimulates the transcriptional activity of hypoxia-inducible factor 1. Sci Signal 9:ra56CrossRefGoogle Scholar
  34. 34.
    Bok J, Zha XM, Cho YS, Green SH (2003) An extranuclear locus of cAMP-dependent protein kinase action is necessary and sufficient for promotion of spiral ganglion neuronal survival by cAMP. J Neurosci 23:777–787CrossRefGoogle Scholar
  35. 35.
    Peng PL, Zhong X, Tu W, Soundarapandian MM, Molner P, Zhu D, Lau L, Liu S, Liu F, Lu Y (2006) ADAR2-dependent RNA editing of AMPA receptor subunit GluR2 determines vulnerability of neurons in forebrain ischemia. Neuron 49:719–733CrossRefGoogle Scholar
  36. 36.
    Mabuchi T, Kitagawa K, Kuwabara K, Takasawa K, Ohtsuki T, Xia Z, Storm D, Yanagihara T, Hori M, Matsumoto M (2001) Phosphorylation of cAMP response element-binding protein in hippocampal neurons as a protective response after exposure to glutamate in vitro and ischemia in vivo. J Neurosci 21:9204–9213CrossRefGoogle Scholar
  37. 37.
    Lee HT, Chang YC, Wang LY, Wang ST, Huang CC, Ho CJ (2004) cAMP response element-binding protein activation in ligation preconditioning in neonatal brain. Ann Neurol 56:611–623CrossRefGoogle Scholar
  38. 38.
    Qu H, Zhao M, Zhao S, Xiao T, Tang X, Zhao D, Jolkkonen J, Zhao C (2014) Forced limb-use enhances brain plasticity through the cAMP/PKA/CREB signal transduction pathway after stroke in adult rats. Restor Neurol Neurosci 32:597–609Google Scholar
  39. 39.
    Liu B, Li LL, Tan XD, Zhang YH, Jiang Y, He GQ, Chen Q, Li CQ (2015) Gadd45b mediates axonal plasticity and subsequent functional recovery after experimental stroke in rats. Mol Neurobiol 52:1245–1256CrossRefGoogle Scholar
  40. 40.
    Tanaka K (2001) Alteration of second messengers during acute cerebral ischemia: adenylate cyclase, cyclic AMP-dependent protein kinase, and cyclic AMP response element binding protein. Prog Neurobiol 65:173–207CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Pharmacology and Toxicology, School of PharmacyUniversity of KansasLawrenceUSA
  2. 2.Department of Anesthesiology, School of MedicineUniversity of KansasKansas CityUSA

Personalised recommendations