Neurochemical Research

, Volume 44, Issue 4, pp 735–750 | Cite as

Therapeutic Effect of Agmatine on Neurological Disease: Focus on Ion Channels and Receptors

  • Sumit Barua
  • Jong Youl Kim
  • Jae Young Kim
  • Jae Hwan Kim
  • Jong Eun LeeEmail author
Review Paper


The central nervous system (CNS) is the most injury-prone part of the mammalian body. Any acute or chronic, central or peripheral neurological disorder is related to abnormal biochemical and electrical signals in the brain cells. As a result, ion channels and receptors that are abundant in the nervous system and control the electrical and biochemical environment of the CNS play a vital role in neurological disease. The N-methyl-d-aspartate receptor, 2-amino-3-(5-methyl-3-oxo-1,2-oxazol-4-yl) propanoic acid receptor, kainate receptor, acetylcholine receptor, serotonin receptor, α2-adrenoreceptor, and acid-sensing ion channels are among the major channels and receptors known to be key components of pathophysiological events in the CNS. The primary amine agmatine, a neuromodulator synthesized in the brain by decarboxylation of l-arginine, can regulate ion channel cascades and receptors that are related to the major CNS disorders. In our previous studies, we established that agmatine was related to the regulation of cell differentiation, nitric oxide synthesis, and murine brain endothelial cell migration, relief of chronic pain, cerebral edema, and apoptotic cell death in experimental CNS disorders. In this review, we will focus on the pathophysiological aspects of the neurological disorders regulated by these ion channels and receptors, and their interaction with agmatine in CNS injury.


Agmatine Ion channels Receptors Neurodegenerative disease Receptor blockade 



Central nervous system


Peripheral nervous system


Alzheimer’s disease


Parkinson’s disease


Huntington’s disease


Arginine decarboxylase


Reactive oxygen species


Nuclear factor kappa B


Traumatic brain injury


Nitric oxide


Spinal cord injury


Bone morphogenetic protein



Nuclear factor (erythroid derived 2)-like 2




Maximal electroshock seizures




N-Methyl-d-aspartate receptor


α-Amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor


Nitric oxide synthase


Kainite receptor


G protein-coupled receptor


Clonidine displacing substance




Muscarinic acetylcholine receptor


Nicotinic acetylcholine receptor




Voltage-dependent calcium channel


Low-voltage activated


High-voltage activated


Epithelial Na+ channel/degenerin


Acid-sensing ion channel


Extracellular/intracellular loops



This study was supported by National Research Foundation of Korea (NRF) grant funded by the Korea Government (MSIP) (2017R1A2B2005350).

Author Contributions

JEL provided concept, design and overall supervision of this study. SB, JYK1 contributed in the writing and drawing. JYK2, JHK and JEL participated in the discussion and revision. All authors approved and agreed to be accountable for all aspects of the work.


This study was supported by a National Research Foundation of Korea (NRF) grant funded by the Korea Government (MSIP) (2017R1A2B2005350).

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no competing interests.


  1. 1.
    Kumar P, Kumar D, Jha SK, Jha NK, Ambasta RK (2016) Ion channels in neurological disorders. Adv Protein Chem Struct Biol 103:97–136Google Scholar
  2. 2.
    Bano D, Zanetti F, Mende Y, Nicotera P (2011) Neurodegenerative processes in Huntington’s disease. Cell Death Dis 2:e228Google Scholar
  3. 3.
    Kumar VS, Gopalakrishnan A, Naziroglu M, Rajanikant GK (2014) Calcium ion-the key player in cerebral ischemia. Curr Med Chem 21:2065–2075Google Scholar
  4. 4.
    Shirwany NA, Payette D, Xie J, Guo Q (2007) The amyloid beta ion channel hypothesis of Alzheimer’s disease. Neuropsychiatry Dis Treat 3:597–612Google Scholar
  5. 5.
    Weilinger NL, Maslieieva V, Bialecki J, Sridharan SS, Tang PL, Thompson RJ (2013) Ionotropic receptors and ion channels in ischemic neuronal death and dysfunction. Acta Pharmacol Sin 34:39–48Google Scholar
  6. 6.
    Lim D, Fedrizzi L, Tartari M, Zuccato C, Cattaneo E, Brini M, Carafoli E (2008) Calcium homeostasis and mitochondrial dysfunction in striatal neurons of Huntington disease. J Biol Chem 283:5780–5789Google Scholar
  7. 7.
    Vitvitsky VM, Garg SK, Keep RF, Albin RL, Banerjee R (2012) Na+ and K+ ion imbalances in Alzheimer’s disease. Biochim Biophys Acta 1822:1671–1681Google Scholar
  8. 8.
    Hubner CA, Jentsch TJ (2002) Ion channel diseases. Hum Mol Genet 11:2435–2445Google Scholar
  9. 9.
    Gorbatyuk OS, Milner TA, Wang G, Regunathan S, Reis DJ (2001) Localization of agmatine in vasopressin and oxytocin neurons of the rat hypothalamic paraventricular and supraoptic nuclei. Exp Neurol 171:235–245Google Scholar
  10. 10.
    Reis DJ, Regunathan S (2000) Is agmatine a novel neurotransmitter in brain? Trends Pharmacol Sci 21:187–193Google Scholar
  11. 11.
    Kossel A (1911) Über das agmatin. Z Physiol Chem 66:257–261Google Scholar
  12. 12.
    Li G, Regunathan S, Barrow CJ, Eshraghi J, Cooper R, Reis DJ (1994) Agmatine: an endogenous clonidine-displacing substance in the brain. Science 263:966–969Google Scholar
  13. 13.
    Li G, Regunathan S, Reis DJ (1995) Agmatine is synthesized by a mitochondrial arginine decarboxylase in rat brain. Ann N Y Acad Sci 763:325–329Google Scholar
  14. 14.
    Lortie MJ, Novotny WF, Peterson OW, Vallon V, Malvey K, Mendonca M, Satriano J, Insel P, Thomson SC, Blantz RC (1996) Agmatine, a bioactive metabolite of arginine. Production, degradation, and functional effects in the kidney of the rat. J Clin Investig 97:413–420Google Scholar
  15. 15.
    Otake K, Ruggiero DA, Regunathan S, Wang H, Milner TA, Reis DJ (1998) Regional localization of agmatine in the rat brain: an immunocytochemical study. Brain Res 787:1–14Google Scholar
  16. 16.
    Peters D, Berger J, Langnaese K, Derst C, Madai VI, Krauss M, Fischer KD, Veh RW, Laube G (2013) Arginase and arginine decarboxylase—where do the putative gate keepers of polyamine synthesis reside in rat brain? PLoS ONE 8:e66735Google Scholar
  17. 17.
    Askalany AR, Yamakura T, Petrenko AB, Kohno T, Sakimura K, Baba H (2005) Effect of agmatine on heteromeric N-methyl-D-aspartate receptor channels. Neurosci Res 52:387–392Google Scholar
  18. 18.
    Feng Y, Piletz JE, Leblanc MH (2002) Agmatine suppresses nitric oxide production and attenuates hypoxic-ischemic brain injury in neonatal rats. Pediatr Res 52:606–611Google Scholar
  19. 19.
    Kim JH, Lee YW, Park YM, Park KA, Park SH, Lee WT, Lee JE (2011) Agmatine-reduced collagen scar area accompanied with surface righting reflex recovery after complete transection spinal cord injury. Spine 36:2130–2138Google Scholar
  20. 20.
    Kuo JR, Lo CJ, Chang CP, Lin KC, Lin MT, Chio CC (2011) Agmatine-promoted angiogenesis, neurogenesis, and inhibition of gliosis-reduced traumatic brain injury in rats. J Trauma 71:E87–E93Google Scholar
  21. 21.
    Laube G, Bernstein HG (2017) Agmatine: multifunctional arginine metabolite and magic bullet in clinical neuroscience? Biochem J 474:2619–2640Google Scholar
  22. 22.
    Kim JH, Kim JY, Jung JY, Lee YW, Lee WT, Huh SK, Lee JE (2017) Endogenous agmatine induced by ischemic preconditioning regulates ischemic tolerance following cerebral ischemia. Exp Neurobiol 26:380–389Google Scholar
  23. 23.
    Mun CH, Lee WT, Park KA, Lee JE (2010) Regulation of endothelial nitric oxide synthase by agmatine after transient global cerebral ischemia in rat brain. Anat Cell Biol 43:230–240Google Scholar
  24. 24.
    Piletz JE, Aricioglu F, Cheng JT, Fairbanks CA, Gilad VH, Haenisch B, Halaris A, Hong S, Lee JE, Li J, Liu P, Molderings GJ, Rodrigues AL, Satriano J, Seong GJ, Wilcox G, Wu N, Gilad GM (2013) Agmatine: clinical applications after 100 years in translation. Drug Discov Today 18:880–893Google Scholar
  25. 25.
    Seo SK, Yang W, Park YM, Lee WT, Park KA, Lee JE (2013) Overexpression of human arginine decarboxylase rescues human mesenchymal stem cells against H2O2 toxicity through cell survival protein activation. J Korean Med Sci 28:366–373Google Scholar
  26. 26.
    Uzbay TI (2012) The pharmacological importance of agmatine in the brain. Neurosci Biobehav Rev 36:502–519Google Scholar
  27. 27.
    Mayeur C, Veuillet G, Michaud M, Raul F, Blottiere HM, Blachier F (2005) Effects of agmatine accumulation in human colon carcinoma cells on polyamine metabolism, DNA synthesis and the cell cycle. Biochim Biophys Acta 1745:111–123Google Scholar
  28. 28.
    Wang JF, Su RB, Wu N, Xu B, Lu XQ, Liu Y, Li J (2005) Inhibitory effect of agmatine on proliferation of tumor cells by modulation of polyamine metabolism. Acta Pharmacol Sin 26:616–622Google Scholar
  29. 29.
    Marx M, Trittenwein G, Aufricht C, Hoeger H, Lubec B (1995) Agmatine and spermidine reduce collagen accumulation in kidneys of diabetic db/db mice. Nephron 69:155–158Google Scholar
  30. 30.
    Marc RE, Kalloniatis M, Jones BW (2005) Excitation mapping with the organic cation AGB2+. Vis Res 45:3454–3468Google Scholar
  31. 31.
    Benitez J, Garcia D, Romero N, Gonzalez A, Martinez-Oyanedel J, Figueroa M, Salas M, Lopez V, Garcia-Robles M, Dodd PR, Schenk G, Carvajal N, Uribe E (2018) Metabolic strategies for the degradation of the neuromodulator agmatine in mammals. Metabolism 81:35–44Google Scholar
  32. 32.
    Cai SX (2006) Glycine/NMDA receptor antagonists as potential CNS therapeutic agents: ACEA-1021 and related compounds. Curr Top Med Chem 6:651–662Google Scholar
  33. 33.
    Missale C, Fiorentini C, Busi C, Collo G, Spano PF (2006) The NMDA/D1 receptor complex as a new target in drug development. Curr Top Med Chem 6:801–808Google Scholar
  34. 34.
    Traynelis SF, Wollmuth LP, McBain CJ, Menniti FS, Vance KM, Ogden KK, Hansen KB, Yuan H, Myers SJ, Dingledine R (2010) Glutamate receptor ion channels: structure, regulation, and function. Pharmacol Rev 62:405–496Google Scholar
  35. 35.
    Brittain MK, Brustovetsky T, Sheets PL, Brittain JM, Khanna R, Cummins TR, Brustovetsky N (2012) Delayed calcium dysregulation in neurons requires both the NMDA receptor and the reverse Na+/Ca2+ exchanger. Neurobiol Dis 46:109–117Google Scholar
  36. 36.
    Huang Z, Huang PL, Panahian N, Dalkara T, Fishman MC, Moskowitz MA (1994) Effects of cerebral ischemia in mice deficient in neuronal nitric oxide synthase. Science 265:1883–1885Google Scholar
  37. 37.
    Kaindl AM, Degos V, Peineau S, Gouadon E, Chhor V, Loron G, Le Charpentier T, Josserand J, Ali C, Vivien D, Collingridge GL, Lombet A, Issa L, Rene F, Loeffler JP, Kavelaars A, Verney C, Mantz J, Gressens P (2012) Activation of microglial N-methyl-D-aspartate receptors triggers inflammation and neuronal cell death in the developing and mature brain. Ann Neurol 72:536–549Google Scholar
  38. 38.
    Ahn SK, Hong S, Park YM, Lee WT, Park KA, Lee JE (2011) Effects of agmatine on hypoxic microglia and activity of nitric oxide synthase. Brain Res 1373:48–54Google Scholar
  39. 39.
    Wang WP, Iyo AH, Miguel-Hidalgo J, Regunathan S, Zhu MY (2006) Agmatine protects against cell damage induced by NMDA and glutamate in cultured hippocampal neurons. Brain Res 1084:210–216Google Scholar
  40. 40.
    Costa VV, Del Sarto JL, Rocha RF, Silva FR, Doria JG, Olmo IG, Marques RE, Queiroz-Junior CM, Foureaux G, Araujo JMS, Cramer A, Real A, Ribeiro LS, Sardi SI, Ferreira AJ, Machado FS, de Oliveira AC, Teixeira AL, Nakaya HI, Souza DG, Ribeiro FM, Teixeira MM (2017) N-Methyl-d-aspartate (NMDA) receptor blockade prevents neuronal death induced by Zika virus infection. MBio 8:e00350Google Scholar
  41. 41.
    Zhu MY, Piletz JE, Halaris A, Regunathan S (2003) Effect of agmatine against cell death induced by NMDA and glutamate in neurons and PC12 cells. Cell Mol Neurobiol 23:865–872Google Scholar
  42. 42.
    Fairbanks CA, Schreiber KL, Brewer KL, Yu CG, Stone LS, Kitto KF, Nguyen HO, Grocholski BM, Shoeman DW, Kehl LJ, Regunathan S, Reis DJ, Yezierski RP, Wilcox GL (2000) Agmatine reverses pain induced by inflammation, neuropathy, and spinal cord injury. Proc Natl Acad Sci USA 97:10584–10589Google Scholar
  43. 43.
    Hardingham GE, Bading H (2010) Synaptic versus extrasynaptic NMDA receptor signalling: implications for neurodegenerative disorders. Nat Rev Neurosci 11:682–696Google Scholar
  44. 44.
    Moretti M, Matheus FC, de Oliveira PA, Neis VB, Ben J, Walz R, Rodrigues AL, Prediger RD (2014) Role of agmatine in neurodegenerative diseases and epilepsy. Front Biosci 6:341–359Google Scholar
  45. 45.
    Regunathan S, Piletz JE (2003) Regulation of inducible nitric oxide synthase and agmatine synthesis in macrophages and astrocytes. Ann N Y Acad Sci 1009:20–29Google Scholar
  46. 46.
    Jacob AL, Weinberg RJ (2015) The organization of AMPA receptor subunits at the postsynaptic membrane. Hippocampus 25:798–812Google Scholar
  47. 47.
    Kumar J, Schuck P, Mayer ML (2011) Structure and assembly mechanism for heteromeric kainate receptors. Neuron 71:319–331Google Scholar
  48. 48.
    Liu SJ, Zukin RS (2007) Ca2+-permeable AMPA receptors in synaptic plasticity and neuronal death. Trends Neurosci 30:126–134Google Scholar
  49. 49.
    Sun HY, Bartley AF, Dobrunz LE (2009) Calcium-permeable presynaptic kainate receptors involved in excitatory short-term facilitation onto somatostatin interneurons during natural stimulus patterns. J Neurophysiol 101:1043–1055Google Scholar
  50. 50.
    Anzai T, Tsuzuki K, Yamada N, Hayashi T, Iwakuma M, Inada K, Kameyama K, Hoka S, Saji M (2003) Overexpression of Ca2+-permeable AMPA receptor promotes delayed cell death of hippocampal CA1 neurons following transient forebrain ischemia. Neurosci Res 46:41–51Google Scholar
  51. 51.
    Liu S, Lau L, Wei J, Zhu D, Zou S, Sun HS, Fu Y, Liu F, Lu Y (2004) Expression of Ca2+-permeable AMPA receptor channels primes cell death in transient forebrain ischemia. Neuron 43:43–55Google Scholar
  52. 52.
    Darstein M, Petralia RS, Swanson GT, Wenthold RJ, Heinemann SF (2003) Distribution of kainate receptor subunits at hippocampal mossy fiber synapses. J Neurosci 23:8013–8019Google Scholar
  53. 53.
    Lowry ER, Kruyer A, Norris EH, Cederroth CR, Strickland S (2013) The GluK4 kainate receptor subunit regulates memory, mood, and excitotoxic neurodegeneration. Neuroscience 235:215–225Google Scholar
  54. 54.
    Lee JY, Kim JH, Palmiter RD, Koh JY (2003) Zinc released from metallothionein-iii may contribute to hippocampal CA1 and thalamic neuronal death following acute brain injury. Exp Neurol 184:337–347Google Scholar
  55. 55.
    Kwak S, Weiss JH (2006) Calcium-permeable AMPA channels in neurodegenerative disease and ischemia. Curr Opin Neurobiol 16:281–287Google Scholar
  56. 56.
    Neis VB, Moretti M, Bettio LE, Ribeiro CM, Rosa PB, Goncalves FM, Lopes MW, Leal RB, Rodrigues AL (2016) Agmatine produces antidepressant-like effects by activating AMPA receptors and mTOR signaling. Eur Neuropsychopharmacol 26:959–971Google Scholar
  57. 57.
    Buerkle H, Yaksh TL (1998) Pharmacological evidence for different alpha 2-adrenergic receptor sites mediating analgesia and sedation in the rat. Br J Anaesth 81:208–215Google Scholar
  58. 58.
    Henderson R, Baldwin JM, Ceska TA, Zemlin F, Beckmann E, Downing KH (1990) Model for the structure of bacteriorhodopsin based on high-resolution electron cryo-microscopy. J Mol Biol 213:899–929Google Scholar
  59. 59.
    Salminen T, Varis M, Nyronen T, Pihlavisto M, Hoffren AM, Lonnberg T, Marjamaki A, Frang H, Savola JM, Scheinin M, Johnson MS (1999) Three-dimensional models of α2A-adrenergic receptor complexes provide a structural explanation for ligand binding. J Biol Chem 274:23405–23413Google Scholar
  60. 60.
    Boxwalla M, Matwyshyn G, Puppala BL, Andurkar SV, Gulati A (2010) Involvement of imidazoline and opioid receptors in the enhancement of clonidine-induced analgesia by sulfisoxazole. Can J Physiol Pharmacol 88:541–552Google Scholar
  61. 61.
    Han Z, Xiao MJ, Shao B, Zheng RY, Yang GY, Jin K (2009) Attenuation of ischemia-induced rat brain injury by 2-(-2-benzofuranyl)-2-imidazoline, a high selectivity ligand for imidazoline I2 receptors. Neurol Res 31:390–395Google Scholar
  62. 62.
    Li JX, Zhang Y (2011) Imidazoline I2 receptors: target for new analgesics? Eur J Pharmacol 658:49–56Google Scholar
  63. 63.
    Atlas D, Burstein Y (1984) Isolation and partial purification of a clonidine-displacing endogenous brain substance. Eur J Biochem 144:287–293Google Scholar
  64. 64.
    Coupry I, Atlas D, Podevin RA, Uzielli I, Parini A (1990) Imidazoline-guanidinium receptive site in renal proximal tubule: asymmetric distribution, regulation by cations and interaction with an endogenous clonidine displacing substance. J Pharmacol Exp Ther 252:293–299Google Scholar
  65. 65.
    Zonnenchein R, Diamant S, Atlas D (1990) Imidazoline receptors in rat liver cells: a novel receptor or a subtype of α2-adrenoceptors? Eur J Pharmacol 190:203–215Google Scholar
  66. 66.
    Aricioglu F, Korcegez E, Bozkurt A, Ozyalcin S (2003) Effect of agmatine on acute and mononeuropathic pain. Ann N Y Acad Sci 1009:106–115Google Scholar
  67. 67.
    Aricioglu F, Paul IA, Regunathan S (2004) Agmatine reduces only peripheral-related behavioral signs, not the central signs, of morphine withdrawal in nNOS deficient transgenic mice. Neurosci Lett 354:153–157Google Scholar
  68. 68.
    Dixit MP, Thakre PP, Pannase AS, Aglawe MM, Taksande BG, Kotagale NR (2014) Imidazoline binding sites mediates anticompulsive-like effect of agmatine in marble-burying behavior in mice. Eur J Pharmacol 732:26–31Google Scholar
  69. 69.
    Demehri S, Homayoun H, Honar H, Riazi K, Vafaie K, Roushanzamir F, Dehpour AR (2003) Agmatine exerts anticonvulsant effect in mice: modulation by α2-adrenoceptors and nitric oxide. Neuropharmacology 45:534–542Google Scholar
  70. 70.
    Shelkar GP, Gakare SG, Chakraborty S, Dravid SM, Ugale RR (2016) Interactions of nitric oxide with α2-adrenoceptors within the locus coeruleus underlie the facilitation of inhibitory avoidance memory by agmatine. Br J Pharmacol 173:2589–2599Google Scholar
  71. 71.
    Zomkowski AD, Hammes L, Lin J, Calixto JB, Santos AR, Rodrigues AL (2002) Agmatine produces antidepressant-like effects in two models of depression in mice. Neuroreport 13:387–391Google Scholar
  72. 72.
    Li F, Wu N, Su RB, Liu Y, Lu XQ, Li J (2009) Comparison of agmatine with moxonidine and rilmenidine in morphine dependence in vitro: role of imidazoline I1 receptors. Eur J Pharmacol 612:1–8Google Scholar
  73. 73.
    Taksande BG, Kotagale NR, Patel MR, Shelkar GP, Ugale RR, Chopde CT (2010) Agmatine, an endogenous imidazoline receptor ligand modulates ethanol anxiolysis and withdrawal anxiety in rats. Eur J Pharmacol 637:89–101Google Scholar
  74. 74.
    Taksande BG, Kotagale NR, Tripathi SJ, Ugale RR, Chopde CT (2009) Antidepressant like effect of selective serotonin reuptake inhibitors involve modulation of imidazoline receptors by agmatine. Neuropharmacology 57:415–424Google Scholar
  75. 75.
    Giusepponi ME, Cifani C, Micioni Di Bonaventura MV, Mattioli L, Hudson A, Diamanti E, Del Bello F, Giannella M, Mammoli V, Paoletti CD, Piergentili A, Pigini M, Quaglia W (2016) Combined interactions with I1-, I2-imidazoline binding sites and α2-adrenoceptors to manage opioid addiction. ACS Med Chem Lett 7:956–961Google Scholar
  76. 76.
    Fredriksson R, Lagerstrom MC, Lundin LG, Schioth HB (2003) The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints. Mol Pharmacol 63:1256–1272Google Scholar
  77. 77.
    Kruse AC, Kobilka BK, Gautam D, Sexton PM, Christopoulos A, Wess J (2014) Muscarinic acetylcholine receptors: novel opportunities for drug development. Nat Rev Drug Discov 13:549–560Google Scholar
  78. 78.
    Wess J, Eglen RM, Gautam D (2007) Muscarinic acetylcholine receptors: mutant mice provide new insights for drug development. Nat Rev Drug Discov 6:721–733Google Scholar
  79. 79.
    Eglen RM (2012) Overview of muscarinic receptor subtypes. Handb Exp Pharmacol 2012:3–28Google Scholar
  80. 80.
    Conn PJ, Jones CK, Lindsley CW (2009) Subtype-selective allosteric modulators of muscarinic receptors for the treatment of CNS disorders. Trends Pharmacol Sci 30:148–155Google Scholar
  81. 81.
    Liao DL, Hong CJ, Chen HM, Chen YE, Lee SM, Chang CY, Chen H, Tsai SJ (2003) Association of muscarinic M1 receptor genetic polymorphisms with psychiatric symptoms and cognitive function in schizophrenic patients. Neuropsychobiology 48:72–76Google Scholar
  82. 82.
    Peretto I, Petrillo P, Imbimbo BP (2009) Medicinal chemistry and therapeutic potential of muscarinic M3 antagonists. Med Res Rev 29:867–902Google Scholar
  83. 83.
    Albuquerque EX, Pereira EF, Alkondon M, Rogers SW (2009) Mammalian nicotinic acetylcholine receptors: from structure to function. Physiol Rev 89:73–120Google Scholar
  84. 84.
    Zhang L, Xiong W (2009) Modulation of the Cys-loop ligand-gated ion channels by fatty acid and cannabinoids. Vitam Horm 81:315–335Google Scholar
  85. 85.
    Dani JA, Bertrand D (2007) Nicotinic acetylcholine receptors and nicotinic cholinergic mechanisms of the central nervous system. Annu Rev Pharmacol Toxicol 47:699–729Google Scholar
  86. 86.
    Rode F, Munro G, Holst D, Nielsen EO, Troelsen KB, Timmermann DB, Ronn LC, Grunnet M (2012) Positive allosteric modulation of α4β2 nAChR agonist induced behaviour. Brain Res 1458:67–75Google Scholar
  87. 87.
    Li M, Lester HA (2001) Ion channel diseases of the central nervous system. CNS Drug Rev 7:214–240Google Scholar
  88. 88.
    Picciotto MR, Caldarone BJ, Brunzell DH, Zachariou V, Stevens TR, King SL (2001) Neuronal nicotinic acetylcholine receptor subunit knockout mice: physiological and behavioral phenotypes and possible clinical implications. Pharmacol Ther 92:89–108Google Scholar
  89. 89.
    Wootten D, Christopoulos A, Sexton PM (2013) Emerging paradigms in GPCR allostery: implications for drug discovery. Nat Rev Drug Discov 12:630–644Google Scholar
  90. 90.
    Loring RH (1990) Agmatine acts as an antagonist of neuronal nicotinic receptors. Br J Pharmacol 99:207–211Google Scholar
  91. 91.
    Aricioglu-Kartal F, Uzbay IT (1997) Inhibitory effect of agmatine on naloxone-precipitated abstinence syndrome in morphine dependent rats. Life Sci 61:1775–1781Google Scholar
  92. 92.
    Kotagale NR, Taksande BG, Gahane AY, Ugale RR, Chopde CT (2010) Repeated agmatine treatment attenuates nicotine sensitization in mice: modulation by α2-adrenoceptors. Behav Brain Res 213:161–174Google Scholar
  93. 93.
    Morgan AD, Campbell UC, Fons RD, Carroll ME (2002) Effects of agmatine on the escalation of intravenous cocaine and fentanyl self-administration in rats. Pharmacol Biochem Behav 72:873–880Google Scholar
  94. 94.
    Su RB, Wang WP, Lu XQ, Wu N, Liu ZM, Li J (2009) Agmatine blocks acquisition and re-acquisition of intravenous morphine self-administration in rats. Pharmacol Biochem Behav 92:676–682Google Scholar
  95. 95.
    Uzbay IT, Yesilyurt O, Celik T, Ergun H, Isimer A (2000) Effects of agmatine on ethanol withdrawal syndrome in rats. Behav Brain Res 107:153–159Google Scholar
  96. 96.
    Yesilyurt O, Uzbay IT (2001) Agmatine potentiates the analgesic effect of morphine by an α2-adrenoceptor-mediated mechanism in mice. Neuropsychopharmacology 25:98–103Google Scholar
  97. 97.
    Kotagale NR, Walke S, Shelkar GP, Kokare DM, Umekar MJ, Taksande BG (2014) Agmatine attenuates nicotine induced conditioned place preference in mice through modulation of neuropeptide Y system. Behav Brain Res 262:118–124Google Scholar
  98. 98.
    Taksande BG, Kotagale NR, Gawande DY, Bharne AP, Chopde CT, Kokare DM (2014) Neuropeptide Y in the central nucleus of amygdala regulates the anxiolytic effect of agmatine in rats. Eur Neuropsychopharmacol 24:955–963Google Scholar
  99. 99.
    Moosavi M, Khales GY, Abbasi L, Zarifkar A, Rastegar K (2012) Agmatine protects against scopolamine-induced water maze performance impairment and hippocampal ERK and Akt inactivation. Neuropharmacology 62:2018–2023Google Scholar
  100. 100.
    Tsien RW, Ellinor PT, Horne WA (1991) Molecular diversity of voltage-dependent Ca2+ channels. Trends Pharmacol Sci 12:349–354Google Scholar
  101. 101.
    Nowycky MC, Fox AP, Tsien RW (1985) Three types of neuronal calcium channel with different calcium agonist sensitivity. Nature 316:440–443Google Scholar
  102. 102.
    Scott RH, Pearson HA, Dolphin AC (1991) Aspects of vertebrate neuronal voltage-activated calcium currents and their regulation. Prog Neurobiol 36:485–520Google Scholar
  103. 103.
    Catterall WA, Perez-Reyes E, Snutch TP, Striessnig J (2005) International union of pharmacology. XLVIII. Nomenclature and structure-function relationships of voltage-gated calcium channels. Pharmacol Rev 57:411–425Google Scholar
  104. 104.
    Catterall WA (2010) Ion channel voltage sensors: structure, function, and pathophysiology. Neuron 67:915–928Google Scholar
  105. 105.
    Anekonda TS, Quinn JF, Harris C, Frahler K, Wadsworth TL, Woltjer RL (2011) L-type voltage-gated calcium channel blockade with isradipine as a therapeutic strategy for Alzheimer’s disease. Neurobiol Dis 41:62–70Google Scholar
  106. 106.
    Ostacher MJ, Iosifescu DV, Hay A, Blumenthal SR, Sklar P, Perlis RH (2014) Pilot investigation of isradipine in the treatment of bipolar depression motivated by genome-wide association. Bipolar Disord 16:199–203Google Scholar
  107. 107.
    Ziyatdinova S, Gurevicius K, Kutchiashvili N, Bolkvadze T, Nissinen J, Tanila H, Pitkanen A (2011) Spontaneous epileptiform discharges in a mouse model of Alzheimer’s disease are suppressed by antiepileptic drugs that block sodium channels. Epilepsy Res 94:75–85Google Scholar
  108. 108.
    Weng XC, Gai XD, Zheng JQ, Li J (2003) Agmatine blocked voltage-gated calcium channel in cultured rat hippocampal neurons. Acta Pharmacol Sin 24:746–750Google Scholar
  109. 109.
    Zheng JQ, Weng XC, Gai XD, Li J, Xiao WB (2004) Mechanism underlying blockade of voltage-gated calcium channels by agmatine in cultured rat hippocampal neurons. Acta Pharmacol Sin 25:281–285Google Scholar
  110. 110.
    Wang G, Gorbatyuk OS, Dayanithi G, Ouyang W, Wang J, Milner TA, Regunathan S, Reis DJ (2002) Evidence for endogenous agmatine in hypothalamo-neurohypophysial tract and its modulation on vasopressin release and Ca2+ channels. Brain Res 932:25–36Google Scholar
  111. 111.
    Kim YH, Jeong JH, Ahn DS, Chung S (2016) Agmatine suppresses peripheral sympathetic tone by inhibiting N-type Ca2+ channel activity via imidazoline I2 receptor activation. Biochem Biophys Res Commun 477:406–412Google Scholar
  112. 112.
    Chu XP, Papasian CJ, Wang JQ, Xiong ZG (2011) Modulation of acid-sensing ion channels: molecular mechanisms and therapeutic potential. Int J Physiol Pathophysiol Pharmacol 3:288–309Google Scholar
  113. 113.
    Sherwood TW, Frey EN, Askwith CC (2012) Structure and activity of the acid-sensing ion channels. Am J Physiol Cell Physiol 303:C699–C710Google Scholar
  114. 114.
    Gonzales EB, Kawate T, Gouaux E (2009) Pore architecture and ion sites in acid-sensing ion channels and P2X receptors. Nature 460:599–604Google Scholar
  115. 115.
    Benson CJ, Xie J, Wemmie JA, Price MP, Henss JM, Welsh MJ, Snyder PM (2002) Heteromultimers of DEG/ENaC subunits form H+-gated channels in mouse sensory neurons. Proc Natl Acad Sci USA 99:2338–2343Google Scholar
  116. 116.
    Bohlen CJ, Chesler AT, Sharif-Naeini R, Medzihradszky KF, Zhou S, King D, Sanchez EE, Burlingame AL, Basbaum AI, Julius D (2011) A heteromeric Texas coral snake toxin targets acid-sensing ion channels to produce pain. Nature 479:410–414Google Scholar
  117. 117.
    Yu Y, Chen Z, Li WG, Cao H, Feng EG, Yu F, Liu H, Jiang H, Xu TL (2010) A nonproton ligand sensor in the acid-sensing ion channel. Neuron 68:61–72Google Scholar
  118. 118.
    Hu R, Duan B, Wang D, Yu Y, Li W, Luo H, Lu P, Lin J, Zhu G, Wan Q, Feng H (2011) Role of acid-sensing ion channel 1a in the secondary damage of traumatic spinal cord injury. Ann Surg 254:353–362Google Scholar
  119. 119.
    Pignataro G, Simon RP, Xiong ZG (2007) Prolonged activation of ASIC1a and the time window for neuroprotection in cerebral ischaemia. Brain 130:151–158Google Scholar
  120. 120.
    Wemmie JA, Chen J, Askwith CC, Hruska-Hageman AM, Price MP, Nolan BC, Yoder PG, Lamani E, Hoshi T, Freeman JH Jr, Welsh MJ (2002) The acid-activated ion channel ASIC contributes to synaptic plasticity, learning, and memory. Neuron 34:463–477Google Scholar
  121. 121.
    Li WG, Yu Y, Zhang ZD, Cao H, Xu TL (2010) ASIC3 channels integrate agmatine and multiple inflammatory signals through the nonproton ligand sensing domain. Mol Pain 6:88Google Scholar
  122. 122.
    Peroutka SJ, Howell TA (1994) The molecular evolution of G protein-coupled receptors: focus on 5-hydroxytryptamine receptors. Neuropharmacology 33:319–324Google Scholar
  123. 123.
    Hoyer D, Clarke DE, Fozard JR, Hartig PR, Martin GR, Mylecharane EJ, Saxena PR, Humphrey PP (1994) International union of pharmacology classification of receptors for 5-hydroxytryptamine (Serotonin). Pharmacol Rev 46:157–203Google Scholar
  124. 124.
    McCorvy JD, Roth BL (2015) Structure and function of serotonin G protein-coupled receptors. Pharmacol Ther 150:129–142Google Scholar
  125. 125.
    Wang C, Jiang Y, Ma J, Wu H, Wacker D, Katritch V, Han GW, Liu W, Huang XP, Vardy E, McCorvy JD, Gao X, Zhou XE, Melcher K, Zhang C, Bai F, Yang H, Yang L, Jiang H, Roth BL, Cherezov V, Stevens RC, Xu HE (2013) Structural basis for molecular recognition at serotonin receptors. Science 340:610–614Google Scholar
  126. 126.
    Booij L, Tremblay RE, Szyf M, Benkelfat C (2015) Genetic and early environmental influences on the serotonin system: consequences for brain development and risk for psychopathology. J Psychiatry Neurosci 40:5–18Google Scholar
  127. 127.
    Li YF, Gong ZH, Cao JB, Wang HL, Luo ZP, Li J (2003) Antidepressant-like effect of agmatine and its possible mechanism. Eur J Pharmacol 469:81–88Google Scholar
  128. 128.
    Zomkowski ADE, Rosa AO, Lin J, Santos AR, Calixto JB, Rodrigues ALS (2004) Evidence for serotonin receptor subtypes involvement in agmatine antidepressant like-effect in the mouse forced swimming test. Brain Res 1023:253–263Google Scholar
  129. 129.
    Molderings GJ, Schmidt K, Bönisch H (1996) Inhibition of 5-HT3 receptor function by imidazolines in mouse neuroblastoma cells: potential involvement of σ2 binding sites. Naunyn-Schmiedeberg’s Arch Pharmacol 354:245–252Google Scholar
  130. 130.
    Shopsin B (2013) The clinical antidepressant effect of exogenous agmatine is not reversed by parachlorophenylalanine: a pilot study. Acta Neuropsychiatry 25:113–118Google Scholar
  131. 131.
    Freitas AE, Egea J, Buendia I, Navarro E, Rada P, Cuadrado A, Rodrigues AL, Lopez MG (2015) Agmatine induces Nrf2 and protects against corticosterone effects in hippocampal neuronal cell line. Mol Neurobiol 51:1504–1519Google Scholar
  132. 132.
    Gilad GM, Salame K, Rabey JM, Gilad VH (1996) Agmatine treatment is neuroprotective in rodent brain injury models. Life Sci 58:PL 41–46Google Scholar
  133. 133.
    Gilad GM, Gilad VH (2000) Accelerated functional recovery and neuroprotection by agmatine after spinal cord ischemia in rats. Neurosci Lett 296:97–100Google Scholar
  134. 134.
    Halaris A, Plietz J (2007) Agmatine: metabolic pathway and spectrum of activity in brain. CNS Drugs 21:885–900Google Scholar
  135. 135.
    Yang XC, Reis DJ (1999) Agmatine selectively blocks the N-methyl-D-aspartate subclass of glutamate receptor channels in rat hippocampal neurons. J Pharmacol Exp Ther 288:544–549Google Scholar
  136. 136.
    Yu CG, Marcillo AE, Fairbanks CA, Wilcox GL, Yezierski RP (2000) Agmatine improves locomotor function and reduces tissue damage following spinal cord injury. Neuroreport 11:3203–3207Google Scholar
  137. 137.
    Kriz J, Lalancette-Hebert M (2009) Inflammation, plasticity and real-time imaging after cerebral ischemia. Acta Neuropathol 117:497–509Google Scholar
  138. 138.
    Kim JH, Yenari MA, Giffard RG, Cho SW, Park KA, Lee JE (2004) Agmatine reduces infarct area in a mouse model of transient focal cerebral ischemia and protects cultured neurons from ischemia-like injury. Exp Neurol 189:122–130Google Scholar
  139. 139.
    Lee WT, Hong S, Yoon SH, Kim JH, Park KA, Seong GJ, Lee JE (2009) Neuroprotective effects of agmatine on oxygen-glucose deprived primary-cultured astrocytes and nuclear translocation of nuclear factor-kappa B. Brain Res 1281:64–70Google Scholar
  140. 140.
    Kim DJ, Kim DI, Lee SK, Suh SH, Lee YJ, Kim J, Chung TS, Lee JE (2006) Protective effect of agmatine on a reperfusion model after transient cerebral ischemia: temporal evolution on perfusion MR imaging and histopathologic findings. AJNR Am J Neuroradiol 27:780–785Google Scholar
  141. 141.
    Kim JH, Lee YW, Park KA, Lee WT, Lee JE (2010) Agmatine attenuates brain edema through reducing the expression of aquaporin-1 after cerebral ischemia. J Cereb Blood Flow Metab 30:943–949Google Scholar
  142. 142.
    Yang MZ, Mun CH, Choi YJ, Baik JH, Park KA, Lee WT, Lee JE (2007) Agmatine inhibits matrix metalloproteinase-9 via endothelial nitric oxide synthase in cerebral endothelial cells. Neurol Res 29:749–754Google Scholar
  143. 143.
    Kim JY, Lee YW, Kim JH, Lee WT, Park KA, Lee JE (2015) Agmatine attenuates brain edema and apoptotic cell death after traumatic brain injury. J Korean Med Sci 30:943–952Google Scholar
  144. 144.
    Kuo JR, Lo CJ, Chio CC, Chang CP, Lin MT (2007) Resuscitation from experimental traumatic brain injury by agmatine therapy. Resuscitation 75:506–514Google Scholar
  145. 145.
    Goracke-Postle CJ, Nguyen HO, Stone LS, Fairbanks CA (2006) Release of tritiated agmatine from spinal synaptosomes. Neuroreport 17:13–17Google Scholar
  146. 146.
    Park YM, Han SH, Seo SK, Park KA, Lee WT, Lee JE (2015) Restorative benefits of transplanting human mesenchymal stromal cells overexpressing arginine decarboxylase genes after spinal cord injury. Cytotherapy 17:25–37Google Scholar
  147. 147.
    Park YM, Lee WT, Bokara KK, Seo SK, Park SH, Kim JH, Yenari MA, Park KA, Lee JE (2013) The multifaceted effects of agmatine on functional recovery after spinal cord injury through Modulations of BMP-2/4/7 expressions in neurons and glial cells. PLoS ONE 8:e53911Google Scholar
  148. 148.
    Kang S, Kim CH, Jung H, Kim E, Song HT, Lee JE (2017) Agmatine ameliorates type 2 diabetes induced-Alzheimer’s disease-like alterations in high-fat diet-fed mice via reactivation of blunted insulin signalling. Neuropharmacology 113:467–479Google Scholar
  149. 149.
    Arteni NS, Lavinsky D, Rodrigues AL, Frison VB, Netto CA (2002) Agmatine facilitates memory of an inhibitory avoidance task in adult rats. Neurobiol Learn Mem 78:465–469Google Scholar
  150. 150.
    Liu P, Bergin DH (2009) Differential effects of i.c.v. microinfusion of agmatine on spatial working and reference memory in the rat. Neuroscience 159:951–961Google Scholar
  151. 151.
    Lu W, Dong HJ, Gong ZH, Su RB, Li J (2010) Agmatine inhibits morphine-induced memory impairment in the mouse step-down inhibitory avoidance task. Pharmacol Biochem Behav 97:256–261Google Scholar
  152. 152.
    Moosavi M, Zarifkar AH, Farbood Y, Dianat M, Sarkaki A, Ghasemi R (2014) Agmatine protects against intracerebroventricular streptozotocin-induced water maze memory deficit, hippocampal apoptosis and Akt/GSK3β signaling disruption. Eur J Pharmacol 736:107–114Google Scholar
  153. 153.
    Song J, Hur BE, Bokara KK, Yang W, Cho HJ, Park KA, Lee WT, Lee KM, Lee JE (2014) Agmatine improves cognitive dysfunction and prevents cell death in a streptozotocin-induced Alzheimer rat model. Yonsei Med J 55:689–699Google Scholar
  154. 154.
    Bergin DH, Liu P (2010) Agmatine protects against β-amyloid25-35-induced memory impairments in the rat. Neuroscience 169:794–811Google Scholar
  155. 155.
    Condello S, Calabro E, Caccamo D, Curro M, Ferlazzo N, Satriano J, Magazu S, Ientile R (2012) Protective effects of agmatine in rotenone-induced damage of human SH-SY5Y neuroblastoma cells: Fourier transform infrared spectroscopy analysis in a model of Parkinson’s disease. Amino Acids 42:775–781Google Scholar
  156. 156.
    Condello S, Curro M, Ferlazzo N, Caccamo D, Satriano J, Ientile R (2011) Agmatine effects on mitochondrial membrane potential and NF-kappaB activation protect against rotenone-induced cell damage in human neuronal-like SH-SY5Y cells. J Neurochem 116:67–75Google Scholar
  157. 157.
    Gilad GM, Gilad VH, Finberg JP, Rabey JM (2005) Neurochemical evidence for agmatine modulation of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) neurotoxicity. Neurochem Res 30:713–719Google Scholar
  158. 158.
    Bence AK, Worthen DR, Stables JP, Crooks PA (2003) An in vivo evaluation of the antiseizure activity and acute neurotoxicity of agmatine. Pharmacol Biochem Behav 74:771–775Google Scholar
  159. 159.
    Luszczki JJ, Czernecki R, Wojtal K, Borowicz KK, Czuczwar SJ (2008) Agmatine enhances the anticonvulsant action of phenobarbital and valproate in the mouse maximal electroshock seizure model. J Neural Transm 115:1485–1494Google Scholar
  160. 160.
    Bahremand A, Ziai P, Khodadad TK, Payandemehr B, Rahimian R, Ghasemi A, Ghasemi M, Hedayat T, Dehpour AR (2010) Agmatine enhances the anticonvulsant effect of lithium chloride on pentylenetetrazole-induced seizures in mice: involvement of L-arginine/nitric oxide pathway. Epilepsy Behav 18:186–192Google Scholar
  161. 161.
    Riazi K, Honar H, Homayoun H, Rashidi N, Kiani S, Ebrahimkhani MR, Noorian AR, Ghaffari K, Jannati A, Dehpour AR (2005) The synergistic anticonvulsant effect of agmatine and morphine: possible role of alpha 2-adrenoceptors. Epilepsy Res 65:33–40Google Scholar
  162. 162.
    Moezi L, Shafaroodi H, Hojati A, Dehpour AR (2011) The interaction of melatonin and agmatine on pentylenetetrazole-induced seizure threshold in mice. Epilepsy Behav 22:200–206Google Scholar
  163. 163.
    Su RB, Wei XL, Zheng JQ, Liu Y, Lu XQ, Li J (2004) Anticonvulsive effect of agmatine in mice. Pharmacol Biochem Behav 77:345–349Google Scholar
  164. 164.
    Xu H, Ou F, Wang P, Naren M, Tu D, Zheng R (2014) High dosage of agmatine alleviates pentylenetetrazole-induced chronic seizures in rats possibly by exerting an anticonvulsive effect. Exp Ther Med 8:73–78Google Scholar
  165. 165.
    Esnafoglu E, Irende I (2018) Decreased plasma agmatine levels in autistic subjects. J Neural Transm 125:735–740Google Scholar
  166. 166.
    Kim JW, Seung H, Kim KC, Gonzales ELT, Oh HA, Yang SM, Ko MJ, Han SH, Banerjee S, Shin CY (2017) Agmatine rescues autistic behaviors in the valproic acid-induced animal model of autism. Neuropharmacology 113:71–81Google Scholar
  167. 167.
    Uzbay T, Goktalay G, Kayir H, Eker SS, Sarandol A, Oral S, Buyukuysal L, Ulusoy G, Kirli S (2013) Increased plasma agmatine levels in patients with schizophrenia. J Psychiatr Res 47:1054–1060Google Scholar
  168. 168.
    Uzbay T, Kayir H, Goktalay G, Yildirim M (2010) Agmatine disrupts prepulse inhibition of acoustic startle reflex in rats. J Psychopharmacol 24:923–929Google Scholar
  169. 169.
    Kotagale NR, Taksande BG, Wadhwani PJ, Palhade MW, Mendhi SM, Gawande DY, Hadole PN, Chopde CT (2012) Psychopharmacological study of agmatine in behavioral tests of schizophrenia in rodents. Pharmacol Biochem Behav 100:398–403Google Scholar
  170. 170.
    Palsson E, Fejgin K, Wass C, Klamer D (2008) Agmatine attenuates the disruptive effects of phencyclidine on prepulse inhibition. Eur J Pharmacol 590:212–216Google Scholar
  171. 171.
    Gawali NB, Chowdhury AA, Kothavade PS, Bulani VD, Nagmoti DM, Juvekar AR (2016) Involvement of nitric oxide in anticompulsive-like effect of agmatine on marble-burying behaviour in mice. Eur J Pharmacol 770:165–171Google Scholar
  172. 172.
    Patel VMSFR (2014) Agmatine ameliorates social isolation induced obsessive-compulsive behavior in mice. J Glob Trends Pharm Sci 5:2048–2051Google Scholar
  173. 173.
    Chen GG, Almeida D, Fiori L, Turecki G (2018) Evidence of reduced agmatine concentrations in the cerebral cortex of suicides. Int J Neuropsychopharmacol 21:895–900Google Scholar
  174. 174.
    Gawali NB, Bulani VD, Gursahani MS, Deshpande PS, Kothavade PS, Juvekar AR (2017) Agmatine attenuates chronic unpredictable mild stress-induced anxiety, depression-like behaviours and cognitive impairment by modulating nitrergic signalling pathway. Brain Res 1663:66–77Google Scholar
  175. 175.
    Meylan EM, Breuillaud L, Seredenina T, Magistretti PJ, Halfon O, Luthi-Carter R, Cardinaux JR (2016) Involvement of the agmatinergic system in the depressive-like phenotype of the Crtc1 knockout mouse model of depression. Transl Psychiatry 6:e852Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of AnatomyYonsei University College of MedicineSeoulRepublic of Korea
  2. 2.Brain Korea 21 PLUS Project for Medical ScienceYonsei University College of MedicineSeoulRepublic of Korea
  3. 3.Brain Research InstituteYonsei University College of MedicineSeoulRepublic of Korea
  4. 4.Center for Neuroscience Imaging Research (CNIR), Insititute for Basic ScienceSungkyunkwan UniversitySeoulRepublic of Korea

Personalised recommendations