Advertisement

Nrf2/ARE Pathway as a Therapeutic Target for the Treatment of Parkinson Diseases

  • Artem P. GureevEmail author
  • Vasily N. Popov
Original Paper
  • 76 Downloads

Abstract

Instead of the progress in the understanding of etiology of Parkinson’s disease (PD), effective methods to prevent the progression of the disease have not been developed and only symptomatic treatment is currently possible. One of possible pathways to slow the progression of the disease is protection of dopaminergic neurons by maintaining mitochondrial quality control in neuron cells. Recent studies showed that the most promising target for pharmacological effects on mitochondria is the Nrf2/ARE signaling cascade. It participates in the maintenance of mitochondrial homeostasis, which is provided by an optimal ratio in the processes of mitochondrial biogenesis and mitophagy, as well as the optimal ratio of ROS production and ROS scavenging. Nrf2 activators are capable of modulating these processes, maintaining mitochondrial homeostasis in neurons. In addition, Nrf2 can synergistically interact with other transcription factors, for example, PGC-1a in the regulation of mitochondrial biogenesis and YY1 with the increase of antioxidant defense. All this makes Nrf2 an optimal target for drugs that could support the mitochondrial quality control, which, in combination with antioxidant protection, can significantly slow down the pathogenesis of PD. Some of these compounds have undergone laboratory studies and are at the stage of clinical trials now.

Keywords

Parkinson disease Nrf2 Mitochondrial biogenesis Mitophagy Mitochondrial quality control 

Notes

Acknowledgements

This research was supported by the Ministry of Education and Science of the Russian Federation (State Assessment N 6.4656.2017/8.9); President grant for support of leading scientific school, (Agreement 14.Z57.18.3451-NSh) and Russian Fund for Basic Research (16-04-01014 А).

Compliance with Ethical Standards

Conflict of interest

No conflicts of interest, financial or otherwise, are declared by the authors.

References

  1. 1.
    Lang AE, Lozano AM (1998) Parkinson’s disease. First of two parts. N Engl J Med 339:1044–1053.  https://doi.org/10.1056/NEJM199810083391506 CrossRefGoogle Scholar
  2. 2.
    Puschmann A (2013) Monogenic Parkinson’s disease and parkinsonism: clinical phenotypes and frequencies of known mutations. Parkinsonism Relat Disord 19:407–415.  https://doi.org/10.1016/j.parkreldis.2013.01.020 CrossRefGoogle Scholar
  3. 3.
    Onyango IG, Khan SM, Bennett JP Jr (2017) Mitochondria in the pathophysiology of Alzheimer’s and Parkinson’s diseases. Front Biosci (Landmark Ed) 22:854–872CrossRefGoogle Scholar
  4. 4.
    Yan MH, Wang X, Zhu X (2013) Mitochondrial defects and oxidative stress in Alzheimer disease and Parkinson disease. Free Radic Biol Med 62:90–101.  https://doi.org/10.1016/j.freeradbiomed.2012.11.014 CrossRefGoogle Scholar
  5. 5.
    Hwang O (2013) Role of oxidative stress in Parkinson’s disease. Exp Neurobiol 22:11–17.  https://doi.org/10.5607/en.2013.22.1.11 CrossRefGoogle Scholar
  6. 6.
    Yasueda A, Urushima H, Ito T (2016) Efficacy and interaction of antioxidant supplements as adjuvant therapy in cancer treatment: a systematic review. Integr Cancer Ther 15:17–39.  https://doi.org/10.1177/1534735415610427 CrossRefGoogle Scholar
  7. 7.
    Panahi Y, Khalili N, Sahebi E, Namazi S, Karimian MS, Majeed M, Sahebkar A (2017) Antioxidant effects of curcuminoids in patients with type 2 diabetes mellitus: a randomized controlled trial. Inflammopharmacology 25:25–31.  https://doi.org/10.1007/s10787-016-0301-4 CrossRefGoogle Scholar
  8. 8.
    Carr AC, Maggini S (2017) Vitamin C and immune function. Nutrients 9(11): E1211.  https://doi.org/10.3390/nu9111211 CrossRefGoogle Scholar
  9. 9.
    Sarrafchi A, Bahmani M, Shirzad H, Rafieian-Kopaei M (2016) Oxidative stress and Parkinson’s disease: new hopes in treatment with herbal antioxidants. Curr Pharm Des 22:238–246CrossRefGoogle Scholar
  10. 10.
    Salat D, Tolosa E (2013) Levodopa in the treatment of Parkinson’s disease: current status and new developments. J Parkinsons Dis 3:255–269.  https://doi.org/10.3233/JPD-130186 Google Scholar
  11. 11.
    Dinkova-Kostova AT, Abramov AY (2015) The emerging role of Nrf2 in mitochondrial function. Free Radic Biol Med 88:179–188.  https://doi.org/10.1016/j.freeradbiomed.2015.04.036 CrossRefGoogle Scholar
  12. 12.
    Zenkov NK, Menshchikova EB, Tkachev VO (2013) Keap1/Nrf2/ARE redox-sensitive signaling system as a pharmacological target. Biochemistry (Moscow) 78:19–36.  https://doi.org/10.1134/S0006297913010033 CrossRefGoogle Scholar
  13. 13.
    Prestera T, Talalay P, Alam J, Ahn YI, Lee PJ, Choi AM (1995) Parallel induction of heme oxygenase-1 and chemoprotective phase 2 enzymes by electrophiles and antioxidants: regulation by upstream antioxidant-responsive elements (ARE). Mol Med 1:827–837CrossRefGoogle Scholar
  14. 14.
    Wang B, Williamson G (1994) Detection of a nuclear protein which binds specifically to the antioxidant responsive element (ARE) of the human NAD(P) H:quinone oxidoreductase gene. Biochim Biophys Acta 1219:645–652CrossRefGoogle Scholar
  15. 15.
    Zhou L, Wang W, Hoppel C, Liu J, Zhu X (2015) Parkinson’s disease-associated pathogenic VPS35 mutation causes complex I deficits. Biochim Biophys Acta Mol Basis Dis 1863:2791–2795.  https://doi.org/10.1016/j.bbadis.2017.07.032 CrossRefGoogle Scholar
  16. 16.
    Sun J, Ren X, Simpkins JW (2015) Sequential upregulation of superoxide dismutase 2 and heme oxygenase 1 by tert-butylhydroquinone protects mitochondria during oxidative stress. Mol Pharmacol 88:437–449.  https://doi.org/10.1124/mol.115.098269 CrossRefGoogle Scholar
  17. 17.
    Miyamoto N, Izumi H, Miyamoto R, Kondo H, Tawara A, Sasaguri Y, Kohno K (2011) Quercetin induces the expression of peroxiredoxins 3 and 5 via the Nrf2/NRF1 transcription pathway. Invest Ophthalmol Vis Sci 52:1055–1063.  https://doi.org/10.1167/iovs.10-5777 CrossRefGoogle Scholar
  18. 18.
    Rushmore TH, Pickett CB (1990) Transcriptional regulation of the rat glutathione S-transferase Ya subunit gene. Characterization of a xenobiotic-responsive element controlling inducible expression by phenolic antioxidants. J Biol Chem 265:14648–14653Google Scholar
  19. 19.
    Mulcahy RT, Gipp JJ (1995) Identification of a putative antioxidant response element in the 5′-flanking region of the human gamma-glutamylcysteine synthetase heavy subunit gene. Biochem Biophys Res Commun 209:227–233.  https://doi.org/10.1006/bbrc.1995.1493 CrossRefGoogle Scholar
  20. 20.
    Wang Q, Li WX, Dai SX, Guo YC, Han FF, Zheng JJ, Li GH, Huang JF (2017) Meta-analysis of Parkinson’s disease and Alzheimer’s disease revealed commonly impaired pathways and dysregulation of NRF2-dependent genes. J Alzheimers Dis 56:1525–1539.  https://doi.org/10.3233/JAD-161032 CrossRefGoogle Scholar
  21. 21.
    Nagayama H, Hamamoto M, Ueda M, Nito C, Yamaguchi H, Katayama Y (2004) The effect of ascorbic acid on the pharmacokinetics of levodopa in elderly patients with Parkinson disease. Clin Neuropharmacol 27:270–273CrossRefGoogle Scholar
  22. 22.
    Harrison FE, May JM (2009) Vitamin C function in the brain: vital role of the ascorbate transporter SVCT2. Free Radic Biol Med 46:719–730.  https://doi.org/10.1016/j.freeradbiomed.2008.12.018 CrossRefGoogle Scholar
  23. 23.
    Qiao H, May JM (2012) Interaction of the transcription start site core region and transcription factor YY1 determine ascorbate transporter SVCT2 exon 1a promoter activity. PLoS ONE 7:e35746.  https://doi.org/10.1371/journal.pone.0035746 CrossRefGoogle Scholar
  24. 24.
    Liu W, Guo Q, Zhao H (2018) Oxidative stress-elicited YY1 potentiates antioxidative response via enhancement of NRF2-driven transcriptional activity: a potential neuronal defensive mechanism against ischemia/reperfusion cerebral injury. Biomed Pharmacother 108:698–706.  https://doi.org/10.1016/j.biopha.2018.09.082 CrossRefGoogle Scholar
  25. 25.
    Ascherio A, LeWitt PA, Xu K, Eberly S, Watts A, Matson WR, Marras C, Kieburtz K, Rudolph A, Bogdanov MB, Schwid SR, Tennis M, Tanner CM, Beal MF, Lang AE, Oakes D, Fahn S, Shoulson I, Schwarzschild MA (2009) Urate predicts rate of clinical decline in Parkinson disease. Arch Neurol 66:1460–1468.  https://doi.org/10.1001/archneurol.2009.247 CrossRefGoogle Scholar
  26. 26.
    Ames BN, Cathcart R, Schwiers E, Hochstein P (1981) Uric acid provides an antioxidant defense in humans against oxidant- and radical-caused aging and cancer: a hypothesis. Proc Natl Acad Sci USA 78:6858–6862CrossRefGoogle Scholar
  27. 27.
    Whiteman M, Ketsawatsakul U, Halliwell B (2002) A reassessment of the peroxynitrite scavenging activity of uric acid. Ann N Y Acad Sci 962:242–259CrossRefGoogle Scholar
  28. 28.
    Zhang N, Shu HY, Huang T, Zhang QL, Li D, Zhang GQ, Peng XY, Liu CF, Luo WF, Hu LF (2014) Nrf2 signaling contributes to the neuroprotective effects of urate against 6-OHDA toxicity. PLoS ONE 9:e100286.  https://doi.org/10.1371/journal.pone.0100286 CrossRefGoogle Scholar
  29. 29.
    clinicaltrials.gov/ct2/show/NCT02642393Google Scholar
  30. 30.
    clinicaltrials.gov/ct2/show/NCT02461069Google Scholar
  31. 31.
    Puigserver P, Wu Z, Park CW, Graves R, Wright M, Spiegelman BM (1998) A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell 92:829–839CrossRefGoogle Scholar
  32. 32.
    Wu Z, Puigserver P, Andersson U, Zhang C, Adelmant G, Mootha V, Troy A, Cinti S, Lowell B, Scarpulla RC, Spiegelman BM (1999) Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell 98:115–124.  https://doi.org/10.1016/S0092-8674(00)80611-X CrossRefGoogle Scholar
  33. 33.
    Evans MJ, Scarpulla RC (1990) NRF-1: a trans-activator of nuclear-encoded respiratory genes in animal cells. Genes Dev 4:1023–1034CrossRefGoogle Scholar
  34. 34.
    Virbasius JV, Scarpulla RC (1994) Activation of the human mitochondrial transcription factor A gene by nuclear respiratory factors: a potential regulatory link between nuclear and mitochondrial gene expression in organelle biogenesis. Proc Natl Acad Sci USA 91:1309–1313CrossRefGoogle Scholar
  35. 35.
    Scarpulla RC (2008) Nuclear control of respiratory chain expression by nuclear respiratory factors and PGC-1-related coactivator. Ann N Y Acad Sci 1147:321–334.  https://doi.org/10.1196/annals.1427.006 CrossRefGoogle Scholar
  36. 36.
    Thomas RR, Keeney PM, Bennett JP (2012) Impaired complex-I mitochondrial biogenesis in Parkinson disease frontal cortex. J Parkinsons Dis 2:67–76.  https://doi.org/10.3233/JPD-2012-11074 Google Scholar
  37. 37.
    Zeissler ML, Eastwood J, McCorry K, Hanemann CO, Zajicek JP, Carroll CB (2016) Delta-9-tetrahydrocannabinol protects against MPP+ toxicity in SH-SY5Y cells by restoring proteins involved in mitochondrial biogenesis. Oncotarget 7:46603–46614.  https://doi.org/10.18632/oncotarget.10314 CrossRefGoogle Scholar
  38. 38.
    Piantadosi CA, Carraway MS, Babiker A, Suliman HB (2008) Heme oxygenase-1 regulates cardiac mitochondrial biogenesis via Nrf2-mediated transcriptional control of nuclear respiratory factor-1. Circ Res 103:1232–1240.  https://doi.org/10.1161/01.RES.0000338597.71702.ad CrossRefGoogle Scholar
  39. 39.
    Ahuja M, Ammal Kaidery N, Yang L, Calingasan N, Smirnova N, Gaisin A, Gaisina IN, Gazaryan I, Hushpulian DM, Kaddour-Djebbar I, Bollag WB, Morgan JC, Ratan RR, Starkov AA, Beal MF, Thomas B (2016) Distinct Nrf2 signaling mechanisms of fumaric acid esters and their role in neuroprotection against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced experimental Parkinson’s-like disease. J Neurosci 36:6332–6351.  https://doi.org/10.1523/JNEUROSCI.0426-16.2016 CrossRefGoogle Scholar
  40. 40.
    Tsou YH, Shih CT, Ching CH, Huang JY, Jen CJ, Yu L, Kuo YM, Wu FS, Chuang JI (2015) Treadmill exercise activates Nrf2 antioxidant system to protect the nigrostriatal dopaminergic neurons from MPP+ toxicity. Exp Neurol 263:50–62.  https://doi.org/10.1016/j.expneurol.2014.09.021 CrossRefGoogle Scholar
  41. 41.
    Aguiar AS Jr, Duzzioni M, Remor AP, Tristão FS, Matheus FC, Raisman-Vozari R, Latini A, Prediger RD (2016) Moderate-Intensity physical exercise protects against experimental 6-hydroxydopamine-induced hemiparkinsonism through Nrf2-antioxidant response element pathway. Neurochem Res 41(1–2):64–72.  https://doi.org/10.1007/s11064-015-1709-8 CrossRefGoogle Scholar
  42. 42.
    Cherry AD, Suliman HB, Bartz RR, Piantadosi CA (2014) Peroxisome proliferator-activated receptor γ co-activator 1-α as a critical co-activator of the murine hepatic oxidative stress response and mitochondrial biogenesis in Staphylococcus aureus sepsis. J Biol Chem 289:41–52.  https://doi.org/10.1074/jbc.M113.512483 CrossRefGoogle Scholar
  43. 43.
    Choi HI, Kim HJ, Park JS, Kim IJ, Bae EH, Ma SK, Kim SW (2017) PGC-1α attenuates hydrogen peroxide-induced apoptotic cell death by upregulating Nrf-2 via GSK3β inactivation mediated by activated p38 in HK-2 Cells. Sci Rep 7:4319.  https://doi.org/10.1038/s41598-017-04593-w CrossRefGoogle Scholar
  44. 44.
    Baldelli S, Aquilano K, Ciriolo MR (2013) Punctum on two different transcription factors regulated by PGC-1α: nuclear factor erythroid-derived 2-like 2 and nuclear respiratory factor 2. Biochim Biophys Acta 1830:4137–4146.  https://doi.org/10.1016/j.bbagen.2013.04.006 CrossRefGoogle Scholar
  45. 45.
    Athale J, Ulrich A, MacGarvey NC, Bartz RR, Welty-Wolf KE, Suliman HB, Piantadosi CA (2012) Nrf2 promotes alveolar mitochondrial biogenesis and resolution of lung injury in Staphylococcus aureus pneumonia in mice. Free Radic Biol Med 53:1584–1594.  https://doi.org/10.1016/j.freerabiomed.2012.08.009 CrossRefGoogle Scholar
  46. 46.
    Whitman SA, Long M, Wondrak GT, Zheng H, Zhang DD (2013) Nrf2 modulates contractile and metabolic properties of skeletal muscle in streptozotocin-induced diabetic atrophy. Exp Cell Res 319:2673–2683.  https://doi.org/10.1016/j.yexcr.2013.07.015 CrossRefGoogle Scholar
  47. 47.
    Joe Y, Zheng M, Kim HJ, Uddin MJ, Kim SK, Chen Y, Park J, Cho GJ, Ryter SW, Chung HT (2015) Cilostazol attenuates murine hepatic ischemia and reperfusion injury via heme oxygenase-dependent activation of mitochondrial biogenesis. Am J Physiol Gastrointest Liver Physiol 309:G21–G29.  https://doi.org/10.1152/ajpgi.00307.2014 CrossRefGoogle Scholar
  48. 48.
    Chan DC (2006) Mitochondria: dynamic organelles in disease, aging, and development. Cell 125:1241–1252.  https://doi.org/10.1016/j.cell.2006.06.010 CrossRefGoogle Scholar
  49. 49.
    Shimura H, Hattori N, Kubo SI, Mizuno Y, Asakawa S, Minoshima S, Shimizu N, Iwai K, Chiba T, Tanaka K, Suzuki T (2000) Familial Parkinson disease gene product, parkin, is a ubiquitin-protein ligase. Nat Genet 25:302–305.  https://doi.org/10.1038/77060 CrossRefGoogle Scholar
  50. 50.
    Rogaeva E, Johnson J, Lang AE, Gulick C, Gwinn-Hardy K, Kawarai T, Sato C, Morgan A, Werner J, Nussbaum R, Petit A, Okun MS, McInerney A, Mandel R, Groen JL, Fernandez HH, Postuma R, Foote KD, Salehi-Rad S, Liang Y, Reimsnider S, Tandon A, Hardy J, St George-Hyslop P, Singleton AB (2004) Analysis of the PINK1 gene in a large cohort of cases with Parkinson disease. Arch Neurol 61:1898–1904.  https://doi.org/10.1001/archneur.61.12.1898 CrossRefGoogle Scholar
  51. 51.
    Lazarou M, Sliter DA, Kane LA, Sarraf SA, Wang C, Burman JL, Sideris DP, Fogel AI, Youle RJ (2015) The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy. Nature 524:309–314.  https://doi.org/10.1038/nature14893 CrossRefGoogle Scholar
  52. 52.
    Murata H, Takamatsu H, Liu S, Kataoka K, Huh NH, Sakaguchi M (2015) NRF2 regulates PINK1 expression under oxidative stress conditions. PLoS ONE 10:e0142438.  https://doi.org/10.1371/journal.pone.0142438 CrossRefGoogle Scholar
  53. 53.
    Xiao L, Xu X, Zhang F, Wang M, Xu Y, Tang D, Wang J, Qin Y, Liu Y, Tang C, He L, Greka A, Zhou Z, Liu F, Dong Z, Sun L (2017) The mitochondria-targeted antioxidant MitoQ ameliorated tubular injury mediated by mitophagy in diabetic kidney disease via Nrf2/PINK1. Redox Biol 11:297–311.  https://doi.org/10.1016/j.redox.2016.12.022 CrossRefGoogle Scholar
  54. 54.
    Liu Y, Yan J, Sun C, Li G, Li S, Zhang L, Di C, Gan L, Wang Y, Zhou R, Si J, Zhang H (2018) Ameliorating mitochondrial dysfunction restores carbon ion-induced cognitive deficits via co-activation of NRF2 and PINK1 signaling pathway. Redox Biol 17:143–157.  https://doi.org/10.1016/j.redox.2018.04.012 CrossRefGoogle Scholar
  55. 55.
    Kuroda Y, Mitsui T, Kunishige M, Shono M, Akaike M, Azuma H, Matsumoto T (2006) Parkin enhances mitochondrial biogenesis in proliferating cells. Hum Mol Genet 15:883–895.  https://doi.org/10.1093/hmg/ddl006 CrossRefGoogle Scholar
  56. 56.
    Rothfuss O, Fischer H, Hasegawa T, Maisel M, Leitner P, Miesel F, Sharma M, Bornemann A, Berg D, Gasser T, Patenge N (2009) Parkin protects mitochondrial genome integrity and supports mitochondrial DNA repair. Hum Mol Genet 18:3832–3850.  https://doi.org/10.1093/hmg/ddp327 CrossRefGoogle Scholar
  57. 57.
    Geisler S, Holmström KM, Skujat D, Fiesel FC, Rothfuss OC, Kahle PJ, Springer W (2010) PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1. Nat Cell Biol 12:119–131.  https://doi.org/10.1038/ncb2012 CrossRefGoogle Scholar
  58. 58.
    Jain A, Lamark T, Sjøttem E, Larsen KB, Awuh JA, Øvervatn A, McMahon M, Hayes JD, Johansen T (2010) p62/SQSTM1 is a target gene for transcription factor NRF2 and creates a positive feedback loop by inducing antioxidant response element-driven gene transcription. J Biol Chem 85:22576–22591.  https://doi.org/10.1074/jbc.M110.118976 CrossRefGoogle Scholar
  59. 59.
    East DA, Fagiani F, Crosby J, Georgakopoulos ND, Bertrand H, Schaap M, Fowkes A, Wells G, Campanella M (2014) PMI: a ∆Ψm independent pharmacological regulator of mitophagy. Chem Biol 21:1585–1596.  https://doi.org/10.1016/j.chembiol.2014.09.019 CrossRefGoogle Scholar
  60. 60.
    Lastres-Becker I, García-Yagüe AJ, Scannevin RH, Casarejos MJ, Kügler S, Rábano A, Cuadrado A (2016) Repurposing the NRF2 activator dimethyl fumarate as therapy against synucleinopathy in Parkinson’s disease. Antioxid Redox Signal 25:61–77.  https://doi.org/10.1089/ars.2015.6549 CrossRefGoogle Scholar
  61. 61.
    Casarejos MJ, Menéndez J, Solano RM, Rodríguez-Navarro JA, García de Yébenes J, Mena MA (2006) Susceptibility to rotenone is increased in neurons from parkin null mice and is reduced by minocycline. J Neurochem 97:934–946.  https://doi.org/10.1111/j.1471-4159.2006.03777.x CrossRefGoogle Scholar
  62. 62.
    Papa S, Petruzzella V, Scacco S, Sardanelli AM, Iuso A, Panelli D, Vitale R, Trentadue R, De Rasmo D, Capitanio N, Piccoli C, Papa F, Scivetti M, Bertini E, Rizza T, De Michele G (2009) Pathogenetic mechanisms in hereditary dysfunctions of complex I of the respiratory chain in neurological diseases. Biochim Biophys Acta 1787:502–517.  https://doi.org/10.1016/j.bbabio.2008.12.018 CrossRefGoogle Scholar
  63. 63.
    Gaweda-Walerych K, Safranow K, Jasinska-Myga B, Bialecka M, Klodowska-Duda G, Rudzinska M, Czyzewski K, Cobb SA, Slawek J, Styczynska M, Opala G, Drozdzik M, Nishioka K, Farrer MJ, Ross OA, Wszolek ZK, Barcikowska M, Zekanowski C (2012) PARK2 variability in Polish Parkinson’s disease patients–interaction with mitochondrial haplogroups. Parkinsonism Relat Disord 18:520–524.  https://doi.org/10.1016/j.parkreldis.2012.01.021 CrossRefGoogle Scholar
  64. 64.
    Paul KC, Sinsheimer JS, Cockburn M, Bronstein JM, Bordelon Y, Ritz B (2018) NFE2L2, PPARGC1α, and pesticides and Parkinson’s disease risk and progression. Mech Ageing Dev 173:1–8.  https://doi.org/10.1016/j.mad.2018.04.004 CrossRefGoogle Scholar
  65. 65.
    Gui Y, Zhang L, Lv W, Zhang W, Zhao J, Hu X (2016) NFE2L2 variations reduce antioxidant response in patients with Parkinson disease. Oncotarget 7:10756–10764.  https://doi.org/10.18632/oncotarget.7353 CrossRefGoogle Scholar
  66. 66.
    von Otter M, Bergström P, Quattrone A, De Marco EV, Annesi G, Söderkvist P, Wettinger SB, Drozdzik M, Bialecka M, Nissbrandt H, Klein C, Nilsson M, Hammarsten O, Nilsson S, Zetterberg H (2014) Genetic associations of Nrf2-encoding NFE2L2 variants with Parkinson’s disease - a multicenter study. BMC Med Genet 15:131.  https://doi.org/10.1186/s12881-014-0131-4 CrossRefGoogle Scholar
  67. 67.
    Chen YC, Wu YR, Wu YC, Lee-Chen GJ, Chen CM (2013) Genetic analysis of NFE2L2 promoter variation in Taiwanese Parkinson’s disease. Parkinsonism Relat Disord 19:247–250.  https://doi.org/10.1016/j.parkreldis.2012.10.018 CrossRefGoogle Scholar
  68. 68.
    Zhu M, Zhou T, Zu G, Liang Z (2016) The NFE2L2 rs35652124 polymorphism and the risk of Parkinson’s disease: a systematic review and meta-analysis. Neuroreport 27:901–905.  https://doi.org/10.1097/WNR.0000000000000627 CrossRefGoogle Scholar
  69. 69.
    von Otter M, Landgren S, Nilsson S, Celojevic D, Bergström P, Håkansson A, Nissbrandt H, Drozdzik M, Bialecka M, Kurzawski M, Blennow K, Nilsson M, Hammarsten O, Zetterberg H (2010) Association of Nrf2-encoding NFE2L2 haplotypes with Parkinson’s disease. BMC Med Genet 11:36.  https://doi.org/10.1186/1471-2350-11-36 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Genetics, Cytology and BioengineeringVoronezh State UniversityVoronezhRussia

Personalised recommendations