Advertisement

Electroacupuncture and Curcumin Promote Oxidative Balance and Motor Function Recovery in Rats Following Traumatic Spinal Cord Injury

  • Belen G. Alvarado-Sanchez
  • Hermelinda Salgado-Ceballos
  • Sergio Torres-CastilloEmail author
  • Juan Rodriguez-Silverio
  • Monica E. Lopez-Hernandez
  • Salvador Quiroz-Gonzalez
  • Stephanie Sanchez-Torres
  • Rodrigo Mondragón-Lozano
  • Omar Fabela-Sanchez
Original paper
  • 31 Downloads

Abstract

Spinal cord injury (SCI) is a condition that puts the patient’s life at risk in the acute phase and, during the chronic stage, results in permanent deficits in motor, sensory and autonomic functions. Isolated therapeutic strategies have not shown an effect on this condition. Therefore, this study aimed to evaluate the effects of electroacupuncture (EA) and curcumin, alone or combined, on the oxidative balance, motor function recovery and amount of preserved tissue following a traumatic SCI. Long-Evans rats were divided into five groups: SHAM, SCI, SCI + EA, SCI + Curcumin, and SCI + EA + Curcumin. Nitric oxide was significantly decreased in the Curcumin group; the EA, Curcumin and SCI + EA + Curcumin groups had significantly decreased hydroxyl radical and lipid peroxidation levels. Motor function recovery and the amount of preserved spinal cord tissue were significantly greater in the EA, Curcumin and EA + Curcumin groups. The results show that EA and Curcumin treatment alone or in combination decreased oxidative stress, improved functional motor recovery and increased the amount of preserved spinal cord tissue following a traumatic injury.

Keywords

Electroacupuncture Curcumin Spinal cord injury Oxidative stress Lipid peroxidation Motor function recovery 

Notes

Acknowledgements

Supported by CONACYT.

Compliance with Ethical Standards

Conflict of interest

The authors declare no conflict of interest associated with the present study.

References

  1. 1.
    Lin j, Huo X, Liu X (2017) “mTOR Signaling Pathway”: a potential target of curcumin in the treatment of spinal cord injury. Biomed Res Int.  https://doi.org/10.1155/2017/1634801 Google Scholar
  2. 2.
    Kahraman S, Duz B, Kayali H, Korkmaz A, Oter S, Aydin A, Sayal A (2007) Effects of methylprednisolone and hyperbaric oxygen on oxidative status after experimentalspinal cord injury: a comparative study in rats. Neurochem Res 32(9):1547–1551CrossRefGoogle Scholar
  3. 3.
    Onose G, Haras M, Anghelescu A, Mureşanu D, Giuglea C, Daia Chendreanu C (2010) Integrative emphases on intimate, intrinsic propensity/pathological processes cause of self-recovery limits and also, subtle related targets for neuroprotection pleiotropicity multimodal actions, by accessible therapeutic approaches—in spinal cord injuries. J Med Life 3:262-274Google Scholar
  4. 4.
    Sinescu C, Popa F, Grigorean VT, Onose G, Sandu AM, Popescu M, Burnei G, Strambu V, Popa C (2010) Molecular basis of vascular events following spinal cord injury. Med Life 3:254–261Google Scholar
  5. 5.
    Gandhi S, Abramov AY (2012) Mechanism of oxidative stress in neurodegeneration. Oxid Med Cell Longev.  https://doi.org/10.1155/2012/428010 Google Scholar
  6. 6.
    Cacciatore I, Baldassarre L, Fornasari E, Mollica A, Pinnen F (2012) Recent advances in the treatment of neurodegenerative diseases based on GSH delivery systems. Oxid Med Cell Longev.  https://doi.org/10.1155/2012/240146 Google Scholar
  7. 7.
    Carocho M, Ferreira IC (2013) A review on antioxidants, prooxidants and related controversy: natural and synthetic compounds, screening and analysis methodologies and future perspectives. Food ChemToxicol 51:15–25CrossRefGoogle Scholar
  8. 8.
    Li G, Jia Z, Cao Y, Wang Y, Li H, Zhang Z, Bi J, Lv G, Fan Z (2015) Mitochondrial division inhibitor 1 ameliorates mitochondrial injury, apoptosis and motor dysfunction after acute spinal cord injury in rats. Neurochem Res 40(7):1379–1392CrossRefGoogle Scholar
  9. 9.
    Langevin HM, Churchill Dl, Cipolla MJ (2001) Mechanical signaling through connective tissue: a mechanism for the therapeutic effect of acupuncture. FASEB J 15:2275–2282CrossRefGoogle Scholar
  10. 10.
    Ding Y, Yan Q, Ruan JW, Zhang YQ, Li WJ, Zhang YJ, Li Y, Dong H, Zeng YS (2009) Electro-acupuncture promotes survival, differentiation of the bone marrow mesenchymal stem cells as well as functional recovery in the spinal cord-transected rats. BMC Neurosci.  https://doi.org/10.1186/1471-2202-10-35 Google Scholar
  11. 11.
    Li WJ, Pan SQ, Zeng YS, Su BG, Li SM, Ding Y, Li Y, Ruan JW (2010) Identification of acupuncture-specific proteins in the process of electro-acupuncture after spinal cord injury. Neurosci Res 67:307–316CrossRefGoogle Scholar
  12. 12.
    Dorsher PT, McIntosh PM (2011) Acupuncture’s effects in treating the sequelae of acute and chronic spinal cord injuries: a review of allopathic and traditional chinese medicine literature. Evid Based Complement Alternat Med.  https://doi.org/10.1093/ecam/nep010 Google Scholar
  13. 13.
    Huang SF, Ding Y, Ruan JW, Zhang W, Wu JL, He B, Zhang YJ, Li Y, Zeng YS (2011) An experimental electro-acupuncture study in treatment of the rat demyelinated spinal cord injury induced by ethidium bromide. Neurosci Res 70:294–304CrossRefGoogle Scholar
  14. 14.
    Gao M, Yang H, Liu T, Kuai L (2008) Effects of acupuncture on mitochondria of muscle cell in rats of acute swimming exercise. IFMBE 19:678–680CrossRefGoogle Scholar
  15. 15.
    Rho SW, Choi GS, Ko EJ, Kim SK, Lee YS, Lee HJ, Hong MC, Shin MK, Min BI, Kee HJ, Lee CK, Bae HS (2008) Molecular changes in remote tissues induced by electro-acupuncture stimulation at acupoint ST36. Mol Cells 25:178–183Google Scholar
  16. 16.
    Zhong S, Li Z, Huan L, Chen BY (2009) Neurochemical mechanism of electroacupuncture: anti-injury effect on cerebral function after focal cerebral ischemia in rats. Evid Based Complement Alternat Med 6:51–56CrossRefGoogle Scholar
  17. 17.
    Yu YP, Ju WP, Li ZG, Wang DZ, Wang YC, Xie AM (2010) Acupuncture inhibits oxidative stress and rotational behavior in 6-hydroxydopamine lesioned rat. Brain Res 1336:58–65CrossRefGoogle Scholar
  18. 18.
    Li WJ, Li SM, Ding Y, He B, Keegan J, Dong H, Ruan JW, Zeng YS (2012) Electro-acupuncture upregulates CGRP expression after rat spinal cord transection. Neurochem Int 61:1397–1403CrossRefGoogle Scholar
  19. 19.
    Juarez-Becerril O, Salgado-Ceballos H, Anguiano-Solis C, Alvarado-Sanchez BG, Lopez Hernandez ME, Diaz-Ruiz A, Torres-Castillo S (2015) Electro-acupuncture at GV.4 improves functional recovery in paralyzed rats after a traumatic spinal cord injury. Acupuncture Electro-Ther Res Int J 40:355–369CrossRefGoogle Scholar
  20. 20.
    Xie J, Fang J, Feng X, Liu Q (2006) Effect of electroacupuncture at acupoints of the governor vessel on aquaporin-4 in rat with experimental spinal cord injury. J Tradit Chin Med 26:148–152Google Scholar
  21. 21.
    Tangjitjaroen W (2011) Acupuncture for the treatment of spinal cord injuries. AJTCVM 6:37–43Google Scholar
  22. 22.
    Cemil B, Topuz K, Demircan MN, Kurt G, Tun K, Kutlay M, Ipcioglu O, Kucukodaci Z (2010) Curcumin improves early functional results after experimental spinal cord injury. Acta Neurochir (Wien) 152:1583–1590CrossRefGoogle Scholar
  23. 23.
    Maheshwari RK, Singh AK, Gaddipati J, Srimal RC (2006) Multiple biological activities of curcumin: a short review. Life Sci 78:2081–2087CrossRefGoogle Scholar
  24. 24.
    El-Demerdash FM, Yousef MI, Radwan FM (2009) Ameliorating effect of curcumin on sodium arsenite/induced oxidative damage and lipid peroxidation in different rat organs. Food Chem Toxicol 47:249–254CrossRefGoogle Scholar
  25. 25.
    Liu L, Zhang W, Wang L, Li Y, Tan B, Lu X, Deng Y, Zhang Y, Guo X, Mu J, Yu G (2014) Curcumin prevents cerebral ischemia reperfusion injury via increase of mitochondrial biogenesis. Neurochem Res 39(7):1322–1331CrossRefGoogle Scholar
  26. 26.
    Singh AK, Vinayak M (2015) Curcumin attenuates CFA induced termal hiperalgesia by modulation antioxidant enzymesand down regulation of TNF-α, IL-1β and IL-6. Neurochem Res 40(3):463–472CrossRefGoogle Scholar
  27. 27.
    Sanli AM, Turkoglu E, Serbes G, Sargo MF, Besalti O, Kilinc K, Irack A, Sekerc Z (2012) Effect of curcumin on lipid peroxidation, early ultrastructural findings and neurological recovery after experimental spinal cord contusion injury in rats. Turk Neurosurg 22:189–195Google Scholar
  28. 28.
    Zhang DM, Li YC, Xu D, Ding XQ, Kong LD (2012) Protection of curcumin against fructose-induced hyperuricaemia and renal endothelial dysfunction involves NO-mediated JAK-STAT signalling in rats. Food Chem 134:2184–2193CrossRefGoogle Scholar
  29. 29.
    Wang Y, Yin H, Wang L, Shuboy A, Lou J, Han B, Zhang X, Li J (2013) Curcumin as a potential treatment for Alzheimer’s disease: a study of the effects of curcumin on hippocampal expression of glial fibrillary acidic protein. Am J Chin Med 41:59–70CrossRefGoogle Scholar
  30. 30.
    Kim KT, Kim MJ, Cho DC, Park SH, Hwang JH, Sung JK, Cho HJ, Jeon Y (2014) The neuroprotective effect of treatment with curcumin in acute spinal cord injury: laboratory investigation. Neurol Med Chir (Tokyo) 54:387–394CrossRefGoogle Scholar
  31. 31.
    Wang S, Chen R, Zhong Z, Shi Z, Chen M, Wang Y (2014) Epigallocatechin-3-gallate potentiates the effect of curcumin in inducing growth inhibition and apoptosis of resistant breast cancer cells. Am J Chin Med.  https://doi.org/10.1142/S0192415X14500803 Google Scholar
  32. 32.
    Singh A, Tetreault L, Kalsi-Ryan S, Nouri A, Fehlings MG (2014) Global prevalence and incidence of traumatic spinal cord injury. Clin Epidemiol 23(6):309–331Google Scholar
  33. 33.
    (1995) Mexican general law in health. The use of animals in experimentation. Porrúa, México, pp 430–431Google Scholar
  34. 34.
    Greenwald RA, Rush SW, Moak SA, Weitz Z (1989) Conversion of superoxide generated by polymorphonuclear leukocytes to hydroxyl radical: a direct spectrophotometric detection system based on degradation of deoxyribose. Free Radic Biol Med 6:385–392CrossRefGoogle Scholar
  35. 35.
    Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animall tissue by thiobarbituric acid reaction. Anal Biochem 95:351–358CrossRefGoogle Scholar
  36. 36.
    Basso DM, Beattie MS, Bresnahan JC (1996) Graded histological and locomotor outcomes after spinal cord contusion using the NYU weight-drop device versus transection. ExpNeurol 139:244–256Google Scholar
  37. 37.
    Smith RR, Burke DA, Baldini A, Shum-Siu A, Baltzley R, Bunger M, Magnuson D (2006) The Louisville Swim Scale: a novel assessment of hindlimb function following spinal cord injury in adult rats. J Neurotrauma 23:1654–1670CrossRefGoogle Scholar
  38. 38.
    Azbill RD, Mu X, Bruce-Keller AJ, Mattson MP, Springer JE (1997) Impaired mitochondrial function, oxidative stress and altered antioxidant enzyme activities following traumatic spinal cord injury. Brain Res 765:283–290CrossRefGoogle Scholar
  39. 39.
    Hall ED (2011) Antioxidant therapies for acute spinal cord injury. Neurotherapeutics 8:152–167CrossRefGoogle Scholar
  40. 40.
    Choi DC, Lee JY, Lim EJ, Baik HH, Oh TH, Yune TY (2012) Inhibition of ROS-induced p38MAPK and ERK activation in microglia by acupuncture relieves neuropathic pain after spinal cord injury in rats. Exp Neurol 236:268–282CrossRefGoogle Scholar
  41. 41.
    Robertfroid M, Calderon PB (1994) Free radicals and oxidation phenomena in biological systems. Marcel Dekker Inc., New York, pp 16–17Google Scholar
  42. 42.
    Dalton TP, Shertzer HG, Puga A (1999) Regulation of gene expression by reactive oxygen. Annu Rev Pharmacol Toxicol 39:67–101CrossRefGoogle Scholar
  43. 43.
    Scandalios JG (2005) Oxidative stress: molecular perception and transduction of signals triggering antioxidant gene defenses. Braz J Med Biol Res 38:995–1014CrossRefGoogle Scholar
  44. 44.
    Cha MH, Bai SJ, Lee KH, Cho ZH, Kim YB, Lee HJ, Lee BH (2010) Acute electroacupuncture inhibits nitric oxide synthase expression in the spinal cord of neuropathic rats. Neurol Res 32:96–100CrossRefGoogle Scholar
  45. 45.
    Manni L, Albanesi M, Guaragna M, Paparo SB, Aloe L (2010) Neurotrophins and acupuncture. Auton Neurosci 157:9–17CrossRefGoogle Scholar
  46. 46.
    Liu Z, Ding Y, Zeng YS (2011) A new combined therapeutic strategy of governor vessel electro-acupuncture and adult stem cell transplantation promotes the recovery of injured spinal cord. Curr Med Chem 18:5165–5171CrossRefGoogle Scholar
  47. 47.
    Sueur S, Pesant M, Rochette L, Connat JL (2005) Antiapoptotic effect of calcitonin gene-related peptide on oxidative stress-induced injury in H9c2 cardiomyocytes via the RAMP1/CRLR complex. J Mol Cell Cardiol 39:955–963CrossRefGoogle Scholar
  48. 48.
    Bareyre FM, Schwab ME (2003) Inflammation, degeneration and regeneration in the injured spinal cord insights from DNA microarrays. Trends Neurosci 26:555–563CrossRefGoogle Scholar
  49. 49.
    Choi DC, Lee JY, Moon YJ, Kim SW, Oh TH, Yune TY (2010) Acupuncture-mediated inhibition of inflammation facilitates significant functional recovery after spinal cord injury. Neurobiol Dis 39:272–282CrossRefGoogle Scholar
  50. 50.
    Zhou H, Beevers CS, Huang S (2011) The targets of curcumin. Curr Drug Targets 12:332–347CrossRefGoogle Scholar
  51. 51.
    Trujillo J, Chirino YI, Molina-Jijón E, Andérica-Romero AC, Tapia E, Pedraza-Chaverrí J (2013) Renoprotective effect of the antioxidant curcumin: recent findings. Redox Biol 1:448–456CrossRefGoogle Scholar
  52. 52.
    Zhang J, Wei H, Lin M, Chen C, Wang C, Liu M (2013) Curcumin protects against ischemic spinal cord injury: the pathway effect. Neural Regen Res 8:3391–3400Google Scholar
  53. 53.
    Liu ZQ, Xing SS, Zhang W (2013) Neuroprotective effect of curcumin on spinal cord in rabbit model with ischemia/reperfusion. J Spinal Cord Med 36:147–152CrossRefGoogle Scholar
  54. 54.
    Kolodziejczyk J, Olas B, Saluk-Juszczak J, Wachowicz B (2011) Antioxidative properties of curcumin in the protection of blood platelets against oxidative stress in vitro. Platelets 22:270–276CrossRefGoogle Scholar
  55. 55.
    Shen L, Ji H (2012) The pharmacology of curcumin: is it the degradation products? Trends Mol Med 18:138–144CrossRefGoogle Scholar
  56. 56.
    Tapia E, Soto V, Ortiz-Vega KM, Zarco-Márquez G, Molina-Jijón E, Cristóbal-García M, Santamaría J, García-Niño WR, Correa F, Zazueta C, Pedraza-Chaverri J (2012) Curcumin induces Nrf2 nuclear translocation and prevents glomerular hypertension, hyperfiltration, oxidant stress, and the decrease in antioxidant enzymes in 5/6 nephrectomized rats. Oxid Med Cell Longev.  https://doi.org/10.1155/2012/269039 Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Belen G. Alvarado-Sanchez
    • 1
  • Hermelinda Salgado-Ceballos
    • 2
    • 4
  • Sergio Torres-Castillo
    • 3
    • 4
    Email author
  • Juan Rodriguez-Silverio
    • 1
  • Monica E. Lopez-Hernandez
    • 3
  • Salvador Quiroz-Gonzalez
    • 3
  • Stephanie Sanchez-Torres
    • 5
  • Rodrigo Mondragón-Lozano
    • 2
  • Omar Fabela-Sanchez
    • 5
  1. 1.Escuela Superior de MedicinaInstituto Politécnico NacionalMéxico CityMexico
  2. 2.Unidad de Investigación Médica en Enfermedades Neurológicas, Centro Médico Nacional Siglo XXI, IMSSMéxico CityMexico
  3. 3.Universidad Estatal del Valle de EcatepecEcatepec de MorelosMexico
  4. 4.Proyecto Camina A. C.México CityMexico
  5. 5.UAM IztapalapaMéxico CityMexico

Personalised recommendations