Advertisement

Neurochemical Research

, Volume 44, Issue 1, pp 117–132 | Cite as

Glutamate Dehydrogenase, a Complex Enzyme at a Crucial Metabolic Branch Point

  • Hong Q. Smith
  • Changhong Li
  • Charles A. Stanley
  • Thomas James SmithEmail author
Original Paper

Abstract

In-vitro, glutamate dehydrogenase (GDH) catalyzes the reversible oxidative deamination of glutamate to α-ketoglutarate (α-KG). GDH is found in all organisms, but in animals is allosterically regulated by a wide array of metabolites. For many years, it was not at all clear why animals required such complex control. Further, in both standard textbooks and some research publications, there has been some controversy as to the directionality of the reaction. Here we review recent work demonstrating that GDH operates mainly in the catabolic direction in-vivo and that the finely tuned network of allosteric regulators allows GDH to meet the varied needs in a wide range of tissues in animals. Finally, we review the progress in using pharmacological agents to activate or inhibit GDH that could impact a wide range of pathologies from insulin disorders to tumor growth.

Keywords

Glutamate dehydrogenase Allostery Insulin 

Notes

Acknowledgements

This work was supported by National Institutes of Health Grants 1RO1DK098517-01A1 and R01-DK098517-03S1 (C.L.), R37-DK056268 (C.A.S), and R01-DK072171 (T.J.S.).

References

  1. 1.
    Hudson RC, Daniel RM (1993) L-Glutamate dehydrogenases: distribution, properties and mechanism. Comp Biochem Physiol 106B:767–792Google Scholar
  2. 2.
    Frieden C (1965) Glutamate dehydrogenase VI: survey of purine nucleotides and other effects on the enzyme from various sources. J Biol Chem 240:2028–2037Google Scholar
  3. 3.
    Frieden C (1959) Glutamic dehydrogenase I. The effect of coenzyme on the sedimentation velocity and kinetic mechanism. J Biol Chem 234:809–814Google Scholar
  4. 4.
    Tomkins GM, Yielding KL, Curran JF (1962) The influence of diethylstilbestrol and adenosine diphosphate on pyridine nucleotide coenzyme binding by glutamic dehydrogenase. J Biol Chem 237:1704–1708Google Scholar
  5. 5.
    Bailey JS, Bell ET, Bell JE (1982) Regulation of bovine glutamate dehydrogenase. J Biol Chem 257:5579–5583Google Scholar
  6. 6.
    Sener A, Malaisse WJ (1980) L-leucine and a nonmetabolized analogue activate pancreatic islet glutamate dehydrogenase. Nature 288:187–189CrossRefGoogle Scholar
  7. 7.
    Yielding KL, Tomkins GM (1961) An effect of L-leucine and other essential amino acids on the structure and activity of glutamate dehydrogenase. Proc Natl Acad Sci 47:983CrossRefGoogle Scholar
  8. 8.
    Dieter H, Koberstein R, Sund H (1981) Studies of glutamate dehydrogenase: the interaction of ADP, GTP, and NADPH in complexes with glutamate dehydrogenase. Eur J Biochem 115:217–226CrossRefGoogle Scholar
  9. 9.
    Iwatsubo M, Pantaloni D (1967) Regulation De L’ Activite’ De La glutamate dehydrogenase par les effecteurs GTP et ADP: ETUDE par “stopped flow”. Bull Soc Chem Biol 49:1563–1572Google Scholar
  10. 10.
    Koberstein R, Sund H (1973) The influence of ADP, GTP and L-glutamate on the binding of the reduced coenzyme to beef-liver glutamate dehydrogenase. Eur J Biochem 36:545–552CrossRefGoogle Scholar
  11. 11.
    Fahien LA, Kmiotek E (1981) Regulation of glutamate dehydrogenase by palmitoyl-coenzyme A. Arch Biochem Biophys 212:247–253CrossRefGoogle Scholar
  12. 12.
    Yielding KL, Tomkins GM, Munday JS, Curran JF (1960) The effects of steroid hormones on the glutamic dehydrogenase reaction. Biochem Biophys Res Comm 2:303–306CrossRefGoogle Scholar
  13. 13.
    Markau K, Schneider J, Sund H (1972) Kinetic studies on the mechanism of the action of ADP on the glutamate dehydrogenase reaction. FEBS Lett 24:32–36CrossRefGoogle Scholar
  14. 14.
    Prough RA, Culver JM, Fisher HF (1973) The mechanism of activation of glutamate dehydrogenase-catalyzed reactions by two different, cooperatively bound activators. J Biol Chem 248:8528–8533Google Scholar
  15. 15.
    Cross DG, Fisher HF (1970) The mechanism of glutamate dehydrogenase reaction III: the Binding Of Ligands At Multiple Subsites And Resulting Kinetic Effects. J Biol Chem 245:2612–2621Google Scholar
  16. 16.
    Smith TJ, Bell J (1985) Investigation of the effects of crosslinking glutamate dehydrogenase with dimethylpimelimidate. Arch Biochem Biophys 239:63–73CrossRefGoogle Scholar
  17. 17.
    Couée I, Tipton KF (1989) Activation of glutamate dehydrogenase by L-leucine. Biochim Biophys Acta 995:97–101CrossRefGoogle Scholar
  18. 18.
    Li C, Chen P, Palladino A, Narayan S, Russell LK, Sayed S, Xiong G, Chen J, Stokes D, Butt YM, Jones PM, Collins HW, Cohen NA, Cohen AS, Nissim I, Smith TJ, Strauss AW, Matschinsky FM, Bennett MJ, Stanley CA (2010) Mechanism of hyperinsulinism in short-chain 3-hydroxyacyl-CoA dehydrogenase deficiency involves activation of glutamate dehydrogenase. J Biol Chem 285:31806–31818CrossRefGoogle Scholar
  19. 19.
    Haigis MC, Mostoslavsky R, Haigis KM, Fahie K, Christodoulou DC, Murphy AJ, Valenzuela DM, Yancopoulos GD, Karow M, Blander G, Wolberger C, Prolla TA, Weindruch R, Alt FW, Guarente L (2006) SIRT4 inhibits glutamate dehydrogenase and opposes the effects of calorie restriction in pancreatic beta cells. Cell 126:941–954CrossRefGoogle Scholar
  20. 20.
    Shashidharan P, Clarke DD, Ahmed N, Moschonas N, Plaitakis A (1997) Nerve tissue-specific human glutamate dehydrogenase that is thermolabile and highly regulated by ADP. Neurochem 68:1804–1811CrossRefGoogle Scholar
  21. 21.
    Burki F, Kaessmann H (2004) Birth and adaptive evolution of a hominoid gene that supports high neurotransmitter flux. Nat Genet 36:1061–1063CrossRefGoogle Scholar
  22. 22.
    Kanavouras K, Mastorodemos V, PBorompokas N, Spanaki C, Plaitakis A (2007) Properties and molecular evolution of human GLUD2 (neural and testicular tissue-specific)glutamate dehydrogenase. J Neurosci Res 85:1101–1109CrossRefGoogle Scholar
  23. 23.
    Mastorodemos V, Zaganas I, Spanaki C, Bessa M, Plaitakis A (2005) Molecular basis of human glutamate dehydrogenase regulation under changing energy demands. J Neurosci Res 79:65–73CrossRefGoogle Scholar
  24. 24.
    Mastorodemos V, Kotzamani D, Zaganas I, Arianoglou G, Latsoudis H, Plaitakis A (2009) Human GLUD1 and GLUD2 glutamate dehydrogenase localize to mitochondria and endoplasmic reticulum. Biochem Cell Biol 87:505–516CrossRefGoogle Scholar
  25. 25.
    Plaitakis A, Latsoudis H, Spanaki C (2011) The human GLUD2 glutamate dehydrogenase and its regulation in health and disease. Neurochem Int 59:495–509CrossRefGoogle Scholar
  26. 26.
    Bao X, Pal R, Hascup KN, Wang Y, Wang WT, Xu W, Hui D, Agbas A, Wang X, Michaelis ML, Choi IY, Belousov A, Gerhardt GA, Michaelis EK (2009) Transgenic expression of Glud1 (glutamate dehydrogenase 1) in neurons: in vivo model of enhanced glutamate release, altered synaptic plasticity, and selective neuronal vulnerability. J Neurosci 29:13929–13944CrossRefGoogle Scholar
  27. 27.
    Peterson PE, Smith TJ (1999) The structure of bovine glutamate dehydrogenase provides insights into the mechanism of allostery. Struct Fold Des 7:769–782CrossRefGoogle Scholar
  28. 28.
    Smith TJ, Peterson PE, Schmidt T, Fang J, Stanley C (2001) Structures of bovine glutamate dehydrogenase complexes elucidate the mechanism of purine regulation. J Mol Biol 307:707–720CrossRefGoogle Scholar
  29. 29.
    Smith TJ, Schmidt T, Fang J, Wu J, Siuzdak G, Stanley CA (2002) The structure of apo human glutamate dehydrogenase details subunit communication and allostery. J Mol Biol 318:765–777CrossRefGoogle Scholar
  30. 30.
    Banerjee S, Schmidt T, Fang J, Stanley CA, Smith TJ (2003) Structural studies on ADP activation of mammalian glutamate dehydrogenase and the evolution of regulation. BioChemistry 42:3446–3456CrossRefGoogle Scholar
  31. 31.
    Allen A, Kwagh J, Fang J, Stanley CA, Smith TJ (2004) Evolution of glutamate dehydrogenase regulation of insulin homeostasis is an example of molecular exaptation. BioChemistry 43:14431–14443CrossRefGoogle Scholar
  32. 32.
    Frieden C (1963) Different structural forms of reversibly dissociated glutamic dehydrogenase: relation between enzymatic activity and molecular weight. Biochem Biophys Res Comm 10:410–415CrossRefGoogle Scholar
  33. 33.
    Frieden C (1959) Glutamic dehydrogenase II The effect of various nucleotides on the association-disassociation and kinetic properties. J Biol Chem 234:815–819Google Scholar
  34. 34.
    Shafer JA, Chiancone E, Vittorelli LM, Spagnuolo C, Machler B, Antonini E (1972) Binding of reduced cofactor to glutamate dehydrogenase. Eur J Biochem 31:166–171CrossRefGoogle Scholar
  35. 35.
    Limuti CM (1983) Glutamate dehydrogenase: equilibrium and kinetic studies. Department of Biochemistry, University of Rochester, RochesterGoogle Scholar
  36. 36.
    Batra SP, Colman RF (1986) Isolation and identification of cysteinyl peptide labeled by 6-[(4-bromo-2,3-dioxobutyl)thio]-6-deaminoadenosine 5′-diphosphate in the reduced diphosphopyridine nucleotide inhibitory site of glutamate dehydrogenase. BioChemistry 25:3508–3515CrossRefGoogle Scholar
  37. 37.
    Tomita T, Kuzuyama T, Nishiyama M (2011) Structural basis for leucine-induced allosteric activation of glutamate dehydrogenase. J Biol Chem 286:37406–37413CrossRefGoogle Scholar
  38. 38.
    Manchester KL (1985) Glutamate dehydrogenase: a reappraisal. Biochem Educ 13:131–132CrossRefGoogle Scholar
  39. 39.
    Li M, Allen A, Smith TJ (2007) High throughput screening reveals several new classes of glutamate dehydrogenase inhibitors. Biochemistry 46:15089–15102CrossRefGoogle Scholar
  40. 40.
    Frieden C (1959) Glutamic dehydrogenase III: the order of substrate addition in the enzymatic reaction. J Biol Chem 234:2891–2896Google Scholar
  41. 41.
    Lenartowicz E (1990) A complex effet of arsenite on the formation of a-ketoglutarate in rate liver mitochondria. Arch Biochem Biophys 283:388–396CrossRefGoogle Scholar
  42. 42.
    Hoek JB, Rydström J (1988) Physiological roles of nicotinamide nucleotide transhydrogenase. Biochem J 254:1–10CrossRefGoogle Scholar
  43. 43.
    Reiss PD, Zuurendonk PF, Veech RL (1984) Measurement of tissue purine, pyrimidine, and other nucleotides by radial compression high-performance liquid chromatography. Anal Biochem 140:162–171CrossRefGoogle Scholar
  44. 44.
    Roberg B, Torgner IA, Laake J, Takumi Y, Ottersen OP, Kvamme E (2000) Properties and submitochondrial localization of pig and rat renal phosphate-activated glutaminase. Am J Physiol Cell Physiol 279:C648-657CrossRefGoogle Scholar
  45. 45.
    Sies H, Akerboom TPM, Tager JM (1977) Mitochondria1 and Cytosolic NADPH systems and isocitrate dehydrogenase indicator metabolites during ureogenesis from ammonia in isolated rat hepatocytes. Eur J Biochem 72:301–307CrossRefGoogle Scholar
  46. 46.
    Botman D, Tigchelaar W, Van Noorden CJF (2014) Determination of glutamate dehydrogenase activity and its kinetics in mouse tissues using metabolic mapping (quantitative enzyme histochemistry). J Histochem Cytochem 62:802–812CrossRefGoogle Scholar
  47. 47.
    Rémésy C, Demigné C, Fafournoux P (1986) Control of ammonia distribution ratio across the liver cell membrane and of ureogenesis by extracellular pH. Eur J Biochem 158:283–288CrossRefGoogle Scholar
  48. 48.
    Cueto-Rojas HF, Seifar RM, ten Pierick A, Heijnen SJ, Wahl A (2016) Accurate measurement of the in vivo ammonium concentration in Saccharomyces cerevisiae. Metabolites 6:12CrossRefGoogle Scholar
  49. 49.
    Li C, Najafi H, Daikhin Y, Nissim I, Collins HW, Yudkoff M, Matschinsky FM, Stanley CA (2003) Regulation of leucine stimulated insulin secretion and glutamine metabolism in isolated rat islets. J Biol Chem 278:2853–2858CrossRefGoogle Scholar
  50. 50.
    Li C, Matter A, Kelly A, Petty TJ, Najafi H, MacMullen C, Daikhin Y, Nissim I, Lazarow A, Kwagh J, Collins HW, Hsu BYL, Nissim I, Yudkoff M, Matschinsky FM, Stanley CA (2006) Effects of a GTP-insensitive mutation of glutamate dehydrogenase on insulin secretion in transgenic mice. J Biol Chem 281:15064–15072CrossRefGoogle Scholar
  51. 51.
    Divakaruni AS, Wallace M, Buren C, Martyniuk K, Andreyev AY, Li E, Fields JA, Cordes T, Reynolds IJ, Bloodgood BL, Raymond LA, Metallo CM, Murphy AN (2017) Inhibition of the mitochondrial pyruvate carrier protects from excitotoxic neuronal death. J Cell Biol 216:1091–1105CrossRefGoogle Scholar
  52. 52.
    Cooper AJL (2012) The role of glutamine synthetase and glutamate dehydrogenase in cerebral ammonia homeostasis. Neurochem Res 37:2439–2455CrossRefGoogle Scholar
  53. 53.
    Faff-Michalak L, Albrecht J (1993) Hyperammonemia and hepatic encephalopathy stimulate rat cerebral synaptic mitochondrial glutamate dehydrogenase activity specifically in the direction of glutamate oxidation. Brain Res 618:299–302CrossRefGoogle Scholar
  54. 54.
    Cooper AJL, Jeitner TM (2016) Central role of glutamate metabolism in the maintenance of nitrogen homeostasis in normal and hyperammonemic brain. Biomolecules 6:16CrossRefGoogle Scholar
  55. 55.
    Katagiri M, Nakamura M (2003) Reappraisal of the 20th century version of amino acid metabolism. BBRC 213:205–208Google Scholar
  56. 56.
    Aubert S, Bligny R, Douce R, Ratcliffe RG, Roberts JKM (2001) Contribution of glutamate dehydrogenase to mitochondrial metabolism studied by 13C and 31P nuclear magnetic resonance. J Exp Bot 52:37–45Google Scholar
  57. 57.
    Pamiljans V, Krishnaswamy PR, Dumville G, Meister A (1962) Studies on the mechanism of glutamine synthesis; isolation and properties of the enzyme from sheep brain. BioChemistry 1:153–158CrossRefGoogle Scholar
  58. 58.
    McKenna MC, Stridh MH, McNair LF, Sonnewald U, Waagepetersen HS, Schousboe A (2016) Glutamate oxidation in astrocytes: roles of glutamate dehydrogenase and aminotransferases. J Neurosci Res 94:1561–1571CrossRefGoogle Scholar
  59. 59.
    Sener A, Malaisse-Lagae F, Malaisse WJ (1981) Stimulation of pancreatic islet metabolism and insulin release by a nonmetabolizable amino acid. Proc Natl Acad Sci USA 78:5460–5464CrossRefGoogle Scholar
  60. 60.
    Stanley CA, Lieu YK, Hsu BY, Burlina AB, Greenberg CR, Hopwood NJ, Perlman K, Rich BH, Zammarchi E, Poncz M (1998) Hyperinsulinism and hyperammonemia in infants with regulatory mutations of the glutamate dehydrogenase gene. N Engl J Med 338:1352–1357CrossRefGoogle Scholar
  61. 61.
    Stanley CA, Fang J, Kutyna K, Hsu BYL, Ming JE, Glaser B, Poncz M (2000) Molecular basis and characterization of the hyperinsulinism/hyperammonemia syndrome of the glutamate dehydrogenase gene. Diabetes 49:667–673CrossRefGoogle Scholar
  62. 62.
    MacMullen C, Fang J, Hsu BYL, Kelly A, deLonlay-Debeney P, Saudubray JM, Ganguly A, Smith TJ, Stanley CA (2001) The hyperinsulinism/hyperammonemia contributing investigators: hyperinsulinism/hyperammonemia syndrome in children with regulatory mutations in the inhibitory guanosine triphosphate-binding domain of glutamate dehydrogenase. J Clin Endocrinol Metab 86:1782–1787Google Scholar
  63. 63.
    Hsu BY, Kelly A, Thornton PS, Greenberg CR, Dilling LA, Stanley CA (2001) Protein-sensitive and fasting hypoglycemia in children with the hyperinsulinism/hyperammonemia syndrome. J Pediatr 138:383–389CrossRefGoogle Scholar
  64. 64.
    Li C, Buettger C, Kwagh J, Matter A, Daihkin Y, Nissiam I, Collins HW, Yudkoff M, Stanley CA, Matschinsky FM (2004) A signaling role of glutamine in insulin secretion. J Biol Chem 279:13393–13401CrossRefGoogle Scholar
  65. 65.
    Smith TJ, Stanley CA (2008) Untangling the glutamate dehydrogenase allosteric nightmare. Trends Biol Chem 33:557–564CrossRefGoogle Scholar
  66. 66.
    Kibbey RG, Pongratz RL, Romanelli AJ, Wollheim CB, Cline GW, Shulman GI (2007) Mitochondrial GTP regulates glucose-stimulated insulin secretion. Cell Metab 5:253–264CrossRefGoogle Scholar
  67. 67.
    DeBerardinis RJ, Mancuso A, Daikhin E, Nissim I, Yudkoff M, Wehrli S, Thompson CB (2007) Beyond aerobic glycolysis: transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. PNAS 104:19345–19350CrossRefGoogle Scholar
  68. 68.
    Yang C, Sudderth J, Dang T, Bachoo RG, McDonald JG, DeBerardinis RJ (2009) Glioblastoma cells require glutamate dehydrogenase to survive impairments of glucose metabolism or Akt signaling. Cancer Res 69:7986–7993CrossRefGoogle Scholar
  69. 69.
    Csibi A, Fendt SM, Li C, Poulogiannis G, Choo AY, Chapski DJ, Jeong SM, Dempsey JM, Parkhitko A, Morrison T, Henske EP, Haigis MC, Cantley LC, Stephanopoulos G, Yu J, Blenis J (2013) The mTORC1 pathway stimulates glutamine metabolism and cell proliferation by repressing SIRT4. Cell 153:840–854CrossRefGoogle Scholar
  70. 70.
    Komlos D, Mann KD, Zhuo Y, Ricupero CL, Hart RP, Liu AY, Firestein BL (2013) Glutamate dehydrogenase 1 and SIRT4 regulate glial development. Glia 61:394–408CrossRefGoogle Scholar
  71. 71.
    Liu G, Zhu J, Yu M, Cai C, Zhou Y, Yu M, Fu Z, Gong Y, Yang B, Li Y, Zhou Q, Lin Q, Ye H, Ye L, Zhao X, Li Z, Chen R, Han F, Tang C, Zeng B (2015) Glutamate dehydrogenase is a novel prognostic marker and predicts metastases in colorectal cancer patients. J Transl Med 13:144CrossRefGoogle Scholar
  72. 72.
    Yang H, Ye D, Guan KL, Xiong Y (2012) IDH1 and IDH2 mutations in tumorigenesis: mechanistic insights and clinical perspectives. Clin Cancer Res 18:5562–5571CrossRefGoogle Scholar
  73. 73.
    Parsons DW, Jones S, Zhang X, Lin JC, Leary RJ, Angenendt P, Mankoo P, Carter H, Siu IM, Gallia GL, Olivi A, McLendon R, Rasheed BA, Keir S, Nikolskaya T, Nikolsky Y, Busam DA, Tekleab H, Diaz LAJ, Hartigan J, Smith DR, Strausberg RL, Marie SK, Shinjo SM, Yan H, Riggins GJ, Bigner DD, Karchin R, Papadopoulos N, Parmigiani G, Vogelstein B, Velculescu VE, Kinzler KW (2008) An integrated genomic analysis of human glioblastoma multiforme. Science 321:1807–1812CrossRefGoogle Scholar
  74. 74.
    Chen R, Nishimura MC, Kharbanda S, Peale F, Deng Y, Daemen A, Forrest WF, Kwong M, Hedehus M, Hatzivassiliou G, Friedman LS, Phillips HS (2014) Hominoid-specific enzyme GLUD2 promotes growth of IDH1R132H glioma. PNAS 111:14217–14222CrossRefGoogle Scholar
  75. 75.
    Stanley CA, Baker L (1976) Hyperinsulinism in infants and children: diagnosis and therapy. Adv Pediatr 23:315–355Google Scholar
  76. 76.
    Li M, Smith CJ, Walker MT, Smith TJ (2009) Novel inhibitors complexed with glutamate dehydrogenase: allosteric regulation by control of protein dynamics. J Biol Chem 284:22988–23000CrossRefGoogle Scholar
  77. 77.
    Konayagi S, Minowada M (1933) On the effect of green tea for diabettes mellitus. Study Physiol 10:449–454Google Scholar
  78. 78.
    Yang CS, Wang ZY (1993) Tea and cancer. J Natl Cancer Inst 85:1038–1049CrossRefGoogle Scholar
  79. 79.
    Maron DJ, Lu GP, Cai NS, Wu ZG, Li YH, Chen H, Zhu JQ, Jin XJ, Wouters BC, Zhao J (2003) Cholesterol-lowering effect of a theaflavin-enriched green tea extract: a randomized controlled trial. Arch Intern Med 163:1448–1453CrossRefGoogle Scholar
  80. 80.
    Hamilton-Miller JM (1995) Antimicrobial properties of tea (Camellia sinensis L.). Antimicrob Agents Chemother 39:2375–2377CrossRefGoogle Scholar
  81. 81.
    Katiyar SK, Mukhtar H (1996) Tea in chemoprevention of cancer: epidemiologic and experimental studies. Int J Oncol 8:221–238Google Scholar
  82. 82.
    Waltner-Law ME, Wang XL, Law BK, Hall RK, Nawano M, Granner DK (2002) Epigallocatechin gallate, a constituent of green tea, represses hepatic glucose production. J Biol Chem 277:34933–34940CrossRefGoogle Scholar
  83. 83.
    Anderson RA, Polansky MM (2002) Tea enhances insulin activity. J Agric Food Chem 50:7182–7186CrossRefGoogle Scholar
  84. 84.
    Li C, Allen A, Kwagh K, Doliba NM, Qin W, Najafi H, Collins HW, Matschinsky FM, Stanley CA, Smith TJ (2006) Green tea polyphenols modulate insulin secretion by inhibiting glutamate dehydrogenase. J Biol Chem 281:10214–10221CrossRefGoogle Scholar
  85. 85.
    Li C, Li M, Narayan S, Matschinsky FM, Bennet MJ, Stanley CA, Smith TJ (2011) Green tea polyphenols control dysregulated glutamate dehydrogenase in transgenic mice by hijacking the ADP activation site. J Biol Chem 286:34164–34174CrossRefGoogle Scholar
  86. 86.
    Smith TJ (2011) Green tea polyphenols in drug discovery: a success or failure? Expert Opin Drug Discov 6:589–595CrossRefGoogle Scholar
  87. 87.
    Choo AY, Kim SG, Vander Heiden MG, Mahoney SJ, Vu H, Yoon S-O, Cantley LC, Blenis J (2010) Glucose addiction of TSC null cells Is caused by failed mTORC1-dependent balancing of metabolic demand with supply. Mol Cell 38:487–499CrossRefGoogle Scholar
  88. 88.
    Han SJ, Choi S-E, Yi S-A, Lee S-J, Kim HK, Kim DJ, Lee HC, Lee KW, Kang Y (2012) β-Cell-protective effect of 2-aminobicyclo-(2,2,1)-heptane-2-carboxylic acid as a glutamate dehydrogenase activator in db/db mice. J Endocrinol 212:307–315CrossRefGoogle Scholar
  89. 89.
    Thornton PS, Satin-Smith MS, Herold K, Glaser B, Chiu KC, Nestorowicz A, Permutt MA, Baker L, Stanley CA (1998) Familial hyperinsulinism with apparent autosomal dominant inheritance: clinical and genetic differences from the autosomal recessive variant. J Pediatr 132:9–14CrossRefGoogle Scholar
  90. 90.
    Wang Q, Beaumont KA, Otte NJ, Font J, Bailey CG, van Geldermalsen M, Sharp DM, Tiffen JC, Ryan RM, Jormakka M, Haass NK, Rasko JEJ, Holst J (2014) Targeting glutamine transport to suppress melanoma cell growth. Int J of Cancer 135:1060–1071CrossRefGoogle Scholar
  91. 91.
    Kim CS, Cho SH, Chun HS, Lee SY, Endou H, Kanai Y, Kim DK (2008) BCH, an inhibitor of system L amino acid transporters, induces apoptosis in cancer cells. Biol Pharm Bull 31:1096–1100CrossRefGoogle Scholar
  92. 92.
    Smith HQ, Smith TJ (2016) Identification of a novel activator of mammalian glutamate dehydrogenase. Biochemistry 55:6568–6576CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Department of Biochemistry and Molecular BiologyUniversity of Texas Medical Branch at GalvestonGalvestonUSA
  2. 2.Division of EndocrinologyThe Children’s Hospital of PhiladelphiaPhiladelphiaUSA

Personalised recommendations