Neurochemical Research

, Volume 38, Issue 9, pp 1838–1849 | Cite as

Glycation of Glutamate Cysteine Ligase by 2-Deoxy-d-Ribose and its Potential Impact on Chemoresistance in Glioblastoma

  • Donald S. Backos
  • Kristofer S. Fritz
  • Debbie G. McArthur
  • Jadwiga K. Kepa
  • Andrew M. Donson
  • Dennis R. Petersen
  • Nicholas K. Foreman
  • Christopher C. Franklin
  • Philip ReiganEmail author
Original Paper


The antioxidant glutathione (GSH) plays a critical role in maintaining intracellular redox homeostasis but in tumors the GSH biosynthetic pathway is often dysregulated, contributing to tumor resistance to radiation and chemotherapy. Glutamate-cysteine ligase (GCL) catalyzes the first and rate-limiting reaction in GSH synthesis, and enzyme function is controlled by GSH feedback inhibition or by transcriptional upregulation of the catalytic (GCLC) and modifier (GCLM) subunits. However, it has recently been reported that the activity of GCLC and the formation of GCL can be modified by reactive aldehyde products derived from lipid peroxidation. Due to the susceptibility of GCLC to posttranslational modifications by reactive aldehydes, we examined the potential for 2-deoxy-d-ribose (2dDR) to glycate GCLC and regulate enzyme activity and GCL formation. 2dDR was found to directly modify both GCLC and GCLM in vitro, resulting in a significant inhibition of GCLC and GCL enzyme activity without altering substrate affinity or feedback inhibition. 2dDR-mediated glycation also inhibited GCL subunit heterodimerization and formation of the GCL holoenzyme complex while not causing dissociation of pre-formed holoenzyme. This PTM could be of particular importance in glioblastoma (GBM) where intratumoral necrosis provides an abundance of thymidine, which can be metabolized by thymidine phosphorylase (TP) to form 2dDR. TP is expressed at high levels in human GBM tumors and shRNA knockdown of TP in U87 GBM cells results in a significant increase in cellular GCL enzymatic activity.


Thymidine phosphorylase Glutamate cysteine ligase 2-Deoxyribose Glutathione Glioblastoma Glycation 


Conflict of interest

The authors declare they have no conflict of interest.


  1. 1.
    Meloche J, Paulin R, Courboulin A, Lambert C, Barrier M, Bonnet P, Bisserier M, Roy M, Sussman MA, Agharazii M, Bonnet S (2011) RAGE-dependent activation of the oncoprotein Pim1 plays a critical role in systemic vascular remodeling processes. Arterioscler Thromb Vasc Biol 31(9):2114–2124. doi: 10.1161/ATVBAHA.111.230573 PubMedCrossRefGoogle Scholar
  2. 2.
    Sparvero LJ, Asafu-Adjei D, Kang R, Tang D, Amin N, Im J, Rutledge R, Lin B, Amoscato AA, Zeh HJ, Lotze MT (2009) RAGE (Receptor for Advanced Glycation Endproducts), RAGE ligands, and their role in cancer and inflammation. J Transl Med 7:17. doi: 10.1186/1479-5876-7-17 PubMedCrossRefGoogle Scholar
  3. 3.
    Singh R, Barden A, Mori T, Beilin L (2001) Advanced glycation end-products: a review. Diabetologia 44(2):129–146. doi: 10.1007/s001250051591 PubMedCrossRefGoogle Scholar
  4. 4.
    Goldin A, Beckman JA, Schmidt AM, Creager MA (2006) Advanced glycation end products: sparking the development of diabetic vascular injury. Circulation 114(6):597–605. doi: 10.1161/CIRCULATIONAHA.106.621854 PubMedCrossRefGoogle Scholar
  5. 5.
    Cho SJ, Roman G, Yeboah F, Konishi Y (2007) The road to advanced glycation end products: a mechanistic perspective. Curr Med Chem 14(15):1653–1671PubMedCrossRefGoogle Scholar
  6. 6.
    Watkins NG, Thorpe SR, Baynes JW (1985) Glycation of amino groups in protein. Studies on the specificity of modification of RNase by glucose. J Biol Chem 260(19):10629–10636PubMedGoogle Scholar
  7. 7.
    Horiuchi S (1996) Advanced glycation end products (AGE)-modified proteins and their potential relevance to atherosclerosis. Trends Cardiovasc Med 6(5):163–168. doi: 10.1016/1050-1738(96)00050-3 PubMedCrossRefGoogle Scholar
  8. 8.
    Syrovy I (1994) Glycation of albumin: reaction with glucose, fructose, galactose, ribose or glyceraldehyde measured using four methods. J Biochem Biophys Methods 28(2):115–121PubMedCrossRefGoogle Scholar
  9. 9.
    Khalifah RG, Todd P, Booth AA, Yang SX, Mott JD, Hudson BG (1996) Kinetics of nonenzymatic glycation of ribonuclease A leading to advanced glycation end products. Paradoxical inhibition by ribose leads to facile isolation of protein intermediate for rapid post-Amadori studies. Biochemistry 35(15):4645–4654. doi: 10.1021/bi9525942 PubMedCrossRefGoogle Scholar
  10. 10.
    Brown NS, Bicknell R (1998) Thymidine phosphorylase, 2-deoxy-d-ribose and angiogenesis. Biochem J 334(Pt 1):1–8PubMedGoogle Scholar
  11. 11.
    Brown NS, Jones A, Fujiyama C, Harris AL, Bicknell R (2000) Thymidine phosphorylase induces carcinoma cell oxidative stress and promotes secretion of angiogenic factors. Cancer Res 60(22):6298–6302PubMedGoogle Scholar
  12. 12.
    de Bruin M, Smid K, Laan AC, Noordhuis P, Fukushima M, Hoekman K, Pinedo HM, Peters GJ (2003) Rapid disappearance of deoxyribose-1-phosphate in platelet derived endothelial cell growth factor/thymidine phosphorylase overexpressing cells. Biochem Biophys Res Commun 301(3):675–679PubMedCrossRefGoogle Scholar
  13. 13.
    Takino J, Yamagishi S, Takeuchi M (2012) Glycer-AGEs-RAGE signaling enhances the angiogenic potential of hepatocellular carcinoma by upregulating VEGF expression. World J Gastroenterol 18(15):1781–1788. doi: 10.3748/wjg.v18.i15.1781 PubMedCrossRefGoogle Scholar
  14. 14.
    Rojas A, Gonzalez I, Morales E, Perez-Castro R, Romero J, Figueroa H (2011) Diabetes and cancer: looking at the multiligand/RAGE axis. World J Diabetes 2(7):108–113. doi: 10.4239/wjd.v2.i7.108 PubMedCrossRefGoogle Scholar
  15. 15.
    Bijnsdorp IV, Capriotti F, Kruyt FA, Losekoot N, Fukushima M, Griffioen AW, Thijssen VL, Peters GJ (2011) Thymidine phosphorylase in cancer cells stimulates human endothelial cell migration and invasion by the secretion of angiogenic factors. Br J Cancer 104(7):1185–1192. doi: 10.1038/bjc.2011.74 PubMedCrossRefGoogle Scholar
  16. 16.
    Takebayashi Y, Yamada K, Miyadera K, Sumizawa T, Furukawa T, Kinoshita F, Aoki D, Okumura H, Yamada Y, Akiyama S, Aikou T (1996) The activity and expression of thymidine phosphorylase in human solid tumours. Eur J Cancer 32A(7):1227–1232PubMedCrossRefGoogle Scholar
  17. 17.
    Hirano H, Tanioka K, Yokoyama S, Akiyama S, Kuratsu J (2001) Angiogenic effect of thymidine phosphorylase on macrophages in glioblastoma multiforme. J Neurosurg 95(1):89–95. doi: 10.3171/jns.2001.95.1.0089 PubMedCrossRefGoogle Scholar
  18. 18.
    Takano S, Tsuboi K, Matsumura A, Tomono Y, Mitsui Y, Nose T (2000) Expression of the angiogenic factor thymidine phosphorylase in human astrocytic tumors. J Cancer Res Clin Oncol 126(3):145–152PubMedCrossRefGoogle Scholar
  19. 19.
    Tanioka K, Takeshima H, Hirano H, Kimura T, Nagata S, Akiyama S, Kuratsu J (2001) Biological role of thymidine phosphorylase in human astrocytic tumors. Oncol Rep 8(3):491–496PubMedGoogle Scholar
  20. 20.
    Yao Y, Kubota T, Sato K, Kitai R (2001) Macrophage infiltration-associated thymidine phosphorylase expression correlates with increased microvessel density and poor prognosis in astrocytic tumors. Clin Cancer Res 7(12):4021–4026PubMedGoogle Scholar
  21. 21.
    Noch E, Khalili K (2009) Molecular mechanisms of necrosis in glioblastoma: the role of glutamate excitotoxicity. Cancer Biol Ther 8(19):1791–1797PubMedGoogle Scholar
  22. 22.
    Raza SM, Fuller GN, Rhee CH, Huang S, Hess K, Zhang W, Sawaya R (2004) Identification of necrosis-associated genes in glioblastoma by cDNA microarray analysis. Clin Cancer Res 10(1 Pt 1):212–221PubMedCrossRefGoogle Scholar
  23. 23.
    Miyadera K, Sumizawa T, Haraguchi M, Yoshida H, Konstanty W, Yamada Y, Akiyama S (1995) Role of thymidine phosphorylase activity in the angiogenic effect of platelet derived endothelial cell growth factor/thymidine phosphorylase. Cancer Res 55(8):1687–1690PubMedGoogle Scholar
  24. 24.
    Griffiths L, Stratford IJ (1997) Platelet-derived endothelial cell growth factor thymidine phosphorylase in tumour growth and response to therapy. Br J Cancer 76(6):689–693PubMedCrossRefGoogle Scholar
  25. 25.
    Nakajima Y, Madhyastha R, Maruyama M (2009) 2-Deoxy-d-ribose, a downstream mediator of thymidine phosphorylase, regulates tumor angiogenesis and progression. Anticancer Agents Med Chem 9(2):239–245PubMedCrossRefGoogle Scholar
  26. 26.
    Ikeda R, Furukawa T, Kitazono M, Ishitsuka K, Okumura H, Tani A, Sumizawa T, Haraguchi M, Komatsu M, Uchimiya H, Ren XQ, Motoya T, Yamada K, Akiyama S (2002) Molecular basis for the inhibition of hypoxia-induced apoptosis by 2-deoxy-d-ribose. Biochem Biophys Res Commun 291(4):806–812. doi: 10.1006/bbrc.2002.6432 PubMedCrossRefGoogle Scholar
  27. 27.
    Moghaddam A, Zhang HT, Fan TP, Hu DE, Lees VC, Turley H, Fox SB, Gatter KC, Harris AL, Bicknell R (1995) Thymidine phosphorylase is angiogenic and promotes tumor growth. Proc Natl Acad Sci USA 92(4):998–1002PubMedCrossRefGoogle Scholar
  28. 28.
    Schmidt MM, Greb H, Koliwer-Brandl H, Kelm S, Dringen R (2010) 2-deoxyribose deprives cultured astrocytes of their glutathione. Neurochem Res 35(11):1848–1856. doi: 10.1007/s11064-010-0251-y PubMedCrossRefGoogle Scholar
  29. 29.
    Fico A, Manganelli G, Cigliano L, Bergamo P, Abrescia P, Franceschi C, Martini G, Filosa S (2008) 2-deoxy-d-ribose induces apoptosis by inhibiting the synthesis and increasing the efflux of glutathione. Free Radic Biol Med 45(2):211–217. doi: 10.1016/j.freeradbiomed.2008.04.017 PubMedCrossRefGoogle Scholar
  30. 30.
    Ardestani A, Yazdanparast R, Nejad AS (2008) 2-Deoxy-d-ribose-induced oxidative stress causes apoptosis in human monocytic cells: prevention by pyridoxal-5′-phosphate. Toxicol In Vitro 22(4):968–979. doi: 10.1016/j.tiv.2008.02.010 PubMedCrossRefGoogle Scholar
  31. 31.
    Franklin CC, Backos DS, Mohar I, White CC, Forman HJ, Kavanagh TJ (2009) Structure, function, and post-translational regulation of the catalytic and modifier subunits of glutamate cysteine ligase. Mol Aspects Med 30(1–2):86–98PubMedCrossRefGoogle Scholar
  32. 32.
    Ramamurthy B, Jones AD, Larsson L (2003) Glutathione reverses early effects of glycation on myosin function. Am J Physiol Cell Physiol 285(2):C419–C424. doi: 10.1152/ajpcell.00502.2002 PubMedCrossRefGoogle Scholar
  33. 33.
    Ajiboye R, Harding JJ (1989) The non-enzymic glycosylation of bovine lens proteins by glucosamine and its inhibition by aspirin, ibuprofen and glutathione. Exp Eye Res 49(1):31–41PubMedCrossRefGoogle Scholar
  34. 34.
    Jain SK (1998) Glutathione and glucose-6-phosphate dehydrogenase deficiency can increase protein glycosylation. Free Radic Biol Med 24(1):197–201PubMedCrossRefGoogle Scholar
  35. 35.
    Backos DS, Franklin CC, Reigan P (2012) The role of glutathione in brain tumor drug resistance. Biochem Pharmacol 83(8):1005–1012. doi: 10.1016/j.bcp.2011.11.016 PubMedCrossRefGoogle Scholar
  36. 36.
    Lu SC (2009) Regulation of glutathione synthesis. Mol Aspects Med 30(1–2):42–59PubMedCrossRefGoogle Scholar
  37. 37.
    Griffith OW, Mulcahy RT (1999) The enzymes of glutathione synthesis: gamma-glutamylcysteine synthetase. Adv Enzymol Relat Areas Mol Biol 73:209–267PubMedCrossRefGoogle Scholar
  38. 38.
    Yang Y, Chen Y, Johansson E, Schneider SN, Shertzer HG, Nebert DW, Dalton TP (2007) Interaction between the catalytic and modifier subunits of glutamate-cysteine ligase. Biochem Pharmacol 74(2):372–381. doi: 10.1016/j.bcp.2007.02.003 Google Scholar
  39. 39.
    Tu Z, Anders MW (1998) Expression and characterization of human glutamate-cysteine ligase. Arch Biochem Biophys 354(2):247–254PubMedCrossRefGoogle Scholar
  40. 40.
    Backos DS, Fritz KS, Roede JR, Petersen DR, Franklin CC (2011) Posttranslational modification and regulation of glutamate-cysteine ligase by the alpha, beta-unsaturated aldehyde 4-hydroxy-2-nonenal. Free Radic Biol Med 50(1):14–26. doi: 10.1016/j.freeradbiomed.2010.10.694c PubMedCrossRefGoogle Scholar
  41. 41.
    Krzywanski DM, Dickinson DA, Iles KE, Wigley AF, Franklin CC, Liu RM, Kavanagh TJ, Forman HJ (2004) Variable regulation of glutamate cysteine ligase subunit proteins affects glutathione biosynthesis in response to oxidative stress. Arch Biochem Biophys 423(1):116–125PubMedCrossRefGoogle Scholar
  42. 42.
    Backos DS, Brocker CN, Franklin CC (2010) Manipulation of cellular GSH biosynthetic capacity via TAT-mediated protein transduction of wild-type or a dominant-negative mutant of glutamate cysteine ligase alters cell sensitivity to oxidant-induced cytotoxicity. Toxicol Appl Pharmacol 243(1):35–45. doi: 10.1016/j.taap.2009.11.010 PubMedCrossRefGoogle Scholar
  43. 43.
    White CC, Viernes H, Krejsa CM, Botta D, Kavanagh TJ (2003) Fluorescence-based microtiter plate assay for glutamate-cysteine ligase activity. Anal Biochem 318(2):175–180PubMedCrossRefGoogle Scholar
  44. 44.
    Munanairi A, O’Banion SK, Gamble R, Breuer E, Harris AW, Sandwick RK (2007) The multiple Maillard reactions of ribose and deoxyribose sugars and sugar phosphates. Carbohydr Res 342(17):2575–2592. doi: 10.1016/j.carres.2007.08.003 PubMedCrossRefGoogle Scholar
  45. 45.
    Luers L, Rysiewski K, Dumpitak C, Birkmann E (2012) Kinetics of advanced glycation end products formation on bovine serum albumin with various reducing sugars and dicarbonyl compounds in equimolar ratios. Rejuvenation Res 15(2):201–205. doi: 10.1089/rej.2011.1284 PubMedCrossRefGoogle Scholar
  46. 46.
    Yoshida S, Yamada K, Hamaguchi K, Nishimura M, Hatakeyama E, Tsuchida H, Sakamoto K, Kashiwabara H, Yokoyama T, Ikeda K, Horiuchi S (1998) Immunohistochemical study of human advanced glycation end-products (AGE) and growth factors in cardiac tissues of patients on maintenance dialysis and with kidney transplantation. Clin Nephrol 49(5):273–280PubMedGoogle Scholar
  47. 47.
    Kohler BA, Ward E, McCarthy BJ, Schymura MJ, Ries LA, Eheman C, Jemal A, Anderson RN, Ajani UA, Edwards BK (2011) Annual report to the nation on the status of cancer, 1975–2007, featuring tumors of the brain and other nervous system. J Natl Cancer Inst 103(9):714–736. doi: 10.1093/jnci/djr077 PubMedCrossRefGoogle Scholar
  48. 48.
    Van Meir EG, Hadjipanayis CG, Norden AD, Shu HK, Wen PY, Olson JJ (2010) Exciting new advances in neuro-oncology: the avenue to a cure for malignant glioma. CA Cancer J Clin 60(3):166–193. doi: 10.3322/caac.20069 PubMedCrossRefGoogle Scholar
  49. 49.
    Kaur B, Khwaja FW, Severson EA, Matheny SL, Brat DJ, Van Meir EG (2005) Hypoxia and the hypoxia-inducible-factor pathway in glioma growth and angiogenesis. Neuro Oncol 7(2):134–153. doi: 10.1215/S1152851704001115 PubMedCrossRefGoogle Scholar
  50. 50.
    Januel C, Fay LB, Ruggiero D, Lagarde M, Vericel E (2003) Covalent coupling of reduced glutathione with ribose: loss of cosubstrate ability to glutathione peroxidase. Biochim Biophys Acta 1620(1–3):125–132PubMedCrossRefGoogle Scholar
  51. 51.
    Linetsky MD, Shipova EV, Legrand RD, Argirov OO (2005) Glucose-derived Amadori compounds of glutathione. Biochim Biophys Acta 1724(1–2):181–193. doi: 10.1016/j.bbagen.2005.04.003 PubMedCrossRefGoogle Scholar
  52. 52.
    Krejsa CM, Franklin CC, White CC, Ledbetter JA, Schieven GL, Kavanagh TJ (2010) Rapid activation of glutamate cysteine ligase following oxidative stress. J Biol Chem 285(21):16116–16124. doi: 10.1074/jbc.M110.116210 PubMedCrossRefGoogle Scholar
  53. 53.
    Chang LS (1996) The functional involvement of Lys-38 in the heavy subunit of rat kidney gamma-glutamylcysteine synthetase: chemical modification and mutagenesis studies. J Protein Chem 15(3):321–326PubMedCrossRefGoogle Scholar
  54. 54.
    Gamcsik MP, Kasibhatla MS, Teeter SD, Colvin OM (2012) Glutathione levels in human tumors. Biomarkers 17(8):671–691. doi: 10.3109/1354750X.2012.715672 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Donald S. Backos
    • 1
  • Kristofer S. Fritz
    • 1
  • Debbie G. McArthur
    • 1
  • Jadwiga K. Kepa
    • 1
  • Andrew M. Donson
    • 2
  • Dennis R. Petersen
    • 1
  • Nicholas K. Foreman
    • 2
    • 3
  • Christopher C. Franklin
    • 1
    • 3
  • Philip Reigan
    • 1
    • 3
    Email author
  1. 1.Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical SciencesUniversity of Colorado Anschutz Medical CampusAuroraUSA
  2. 2.Department of PediatricsUniversity of Colorado Anschutz Medical CampusAuroraUSA
  3. 3.University of Colorado Cancer CenterUniversity of Colorado Anschutz Medical CampusAuroraUSA

Personalised recommendations