Fast Synchronization of Complex Networks via Aperiodically Intermittent Sliding Mode Control

  • Yihan Fan
  • Jun Mei
  • Hongmei Liu
  • Yuling FanEmail author
  • Fuxiang Liu
  • Yanjuan Zhang


In the literature, a lot of work focused on studying intermittent control problems via feedback control strategy. No study on the intermittent control problems via sliding mode control method has been reported so far. This paper studies the problem of fast synchronization between two complex dynamical networks via aperiodically intermittent control and sliding mode control. In order to achieve fast synchronization of complex dynamical networks by using aperiodically intermittent sliding mode controller, new differential inequalities are derived firstly. After that, some sufficient finite-time synchronization criteria and finite-time achieving slide mode surface are obtained based on finite-time stability theory, aperiodically intermittent sliding mode control technique and constructing Lyapunov function. Finally, an example is provided to verify the effectiveness of the proposed theoretical methods.


Complex networks Fast synchronization Aperiodically intermittent control Sliding mode control 



The authors would like to thank the editor and the anonymous reviewers for their valuable comments and constructive suggestions. This research is supported by National Natural Science Foundation of China (Grant Nos. 11771172, 11871305, 61903149, 61907021), Humanity and Social Science foundation of MOE of China (20171304).


  1. 1.
    Strogatz SH (2001) Exploring complex networks. Nature 410:268–276zbMATHCrossRefGoogle Scholar
  2. 2.
    Newman MEJ (2003) The structure and function of complex networks. SIAM Rev 45:167–256MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Boccaletti S, Latora V, Moreno Y, Chavez M, Hwang D-U (2006) Complex networks: structure and dynamics. Phys Rep 424:175–308MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Suykens JAK, Osipov GV (2008) Introduction to focus issue: synchronization in complex networks. Chaos 18:037101CrossRefGoogle Scholar
  5. 5.
    Mei J, Jiang M, Huang Z (2011) Outer synchronization between two complex networks with identical and nonidentical topological structures. In: 2011 fourth international workshop on advanced computational intelligence (IWACI), pp 757–762Google Scholar
  6. 6.
    Al-mahbashi G, Noorani MS, Bakar SA, Vahedi S (2016) Adaptive projective lag synchronization of uncertain complex dynamical networks with disturbance. Neurocomputing 207:645–652CrossRefGoogle Scholar
  7. 7.
    Hu J, Zeng C (2017) Adaptive exponential synchronization of complex-valued Cohen–Grossberg neural networks with known and unknown parameters. Neural Netw 86:90–101CrossRefGoogle Scholar
  8. 8.
    Xu Y, Zhang J, Zhou W, Tong D (2017) Adaptive synchronization of complex dynamical networks with bounded delay feedback controller. Optik Int J Light Electron Opt 131:467–474CrossRefGoogle Scholar
  9. 9.
    Liu Y, Zhu C, Chu D, Li W (2018) Synchronization of stochastic coupled systems with time-varying coupling structure on networks via discrete-time state feedback control. Neurocomputing 285:104–116CrossRefGoogle Scholar
  10. 10.
    Xu M, Wang J, Huang Y, Wei P, Wang S (2017) Pinning synchronization of complex dynamical networks with and without time-varying delay. Neurocomputing 266:263–273CrossRefGoogle Scholar
  11. 11.
    Ma Y, Ma N, Chen L (2018) Synchronization criteria for singular complex networks with Markovian jump and time-varying delays via pinning control. Nonlinear Anal Hybrid Syst 29:85–99MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Zheng S (2017) Pinning and impulsive synchronization control of complex dynamical networks with non-derivative and derivative coupling. J Frankl Inst 354(14):6341–6363MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Yang X, Lu J, Ho DWC, Song Q (2018) Synchronization of uncertain hybrid switching and impulsive complex networks. Appl Math Model 59:379–392MathSciNetCrossRefGoogle Scholar
  14. 14.
    Zhang H, Wang X, Lin X (2016) Synchronization of complex-valued neural network with sliding mode control. J Frankl Inst 353(2):345–358MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Ali MS, Yogambigai J, Cao J (2017) Synchronization of master–slave Markovian switching complex dynamical networks with time-varying delays in nonlinear function via sliding mode control. Acta Math Sci 37(2):368–384MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Huang J, Li C, Han Q (2009) Stabilization of delayed chaotic neural networks by periodically intermittent control. Circuits Syst Signal Process 28:567–579MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Mei J, Jiang M, Wang B, Liu Q, Xu W, Liao T (2014) Exonential p-Synchronization of non-autonomous Cohen–Grossberg neural networks with reaction–diffusion terms via periodically intermittent control. Neural Process Lett 40:103–126 CrossRefGoogle Scholar
  18. 18.
    Liu X, Li P, Chen T (2015) Cluster synchronization for delayed complex networks via periodically intermittent pinning control. Neurocomputing 162:191–200CrossRefGoogle Scholar
  19. 19.
    Zhang Z, He Y, Zhang C, Wu M (2016) Exponential stabilization of neural networks with time-varying delay by periodically intermittent control. Neurocomputing 207:469–475CrossRefGoogle Scholar
  20. 20.
    Chen W, Zhong J, Zheng W (2016) Delay-independent stabilization of a class of time-delay systems via periodically intermittent control. Automatica 71:89–97MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Ma X, Wang J (2016) Pinning outer synchronization between two delayed complex networks with nonlinear coupling via adaptive periodically intermittent control. Neurocomputing 199:197–203CrossRefGoogle Scholar
  22. 22.
    Feng J, Yang P, Zhao Y (2016) Cluster synchronization for nonlinearly time-varying delayed coupling complex networks with stochastic perturbation via periodically intermittent pinning control. Appl Math Comput 291:52–68MathSciNetzbMATHGoogle Scholar
  23. 23.
    Yang S, Li C, Huang T (2016) Exponential stabilization and synchronization for fuzzy model of memristive neural networks by periodically intermittent control. Neural Netw 75:162–172zbMATHCrossRefGoogle Scholar
  24. 24.
    Wang Q, He Y, Tan G, Wu M (2017) Observer-based periodically intermittent control for linear systems via piecewise Lyapunov function method. Appl Math Comput 293:438–447MathSciNetzbMATHGoogle Scholar
  25. 25.
    Li H, Hu C, Jiang H, Teng Z, Jiang Y (2017) Synchronization of fractional-order complex dynamical networks via periodically intermittent pinning control. Chaos Solitons Fractals 103:357–363MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Wang P, Hong Y, Su H (2018) Stabilization of stochastic complex-valued coupled delayed systems with Markovian switching via periodically intermittent control. Nonlinear Anal Hybrid Syst 29:395–413MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Guo B, Xiao Y, Zhang C (2018) Synchronization analysis of stochastic coupled systems with time delay on networks by periodically intermittent control and graph-theoretic method. Nonlinear Anal Hybrid Syst 30:118–133MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    Zhang W, Li C, Huang T, Xiao M (2015) Synchronization of neural networks with stochastic perturbation via aperiodically intermittent control. Neural Netw 71:105–111zbMATHCrossRefGoogle Scholar
  29. 29.
    Liu M, Jiang H, Hu C (2016) Synchronization of hybrid-coupled delayed dynamical networks via aperiodically intermittent pinning control. J Frankl Inst 353(12):2722–2742MathSciNetzbMATHCrossRefGoogle Scholar
  30. 30.
    Liu X, Liu Y, Zhou L (2016) Quasi-synchronization of nonlinear coupled chaotic systems via aperiodically intermittent pinning control. Neurocomputing 173:759–767CrossRefGoogle Scholar
  31. 31.
    Liu X, Chen Z, Zhou L (2017) Synchronization of coupled reaction–diffusion neural networks with hybrid coupling via aperiodically intermittent pinning control. J Frankl Inst 354(15):7053–7076MathSciNetzbMATHCrossRefGoogle Scholar
  32. 32.
    Lei X, Cai S, Jiang S, Liu Z (2017) Adaptive outer synchronization between two complex delayed dynamical networks via aperiodically intermittent pinning control. Neurocomputing 222:26–35CrossRefGoogle Scholar
  33. 33.
    Wang J (2017) Synchronization of delayed complex dynamical network with hybrid-coupling via aperiodically intermittent pinning control. J Frankl Inst 354(4):1833–1855MathSciNetzbMATHCrossRefGoogle Scholar
  34. 34.
    Wu X, Feng J, Nie Z (2018) Pinning complex-valued complex network via aperiodically intermittent control. Neurocomputing 305:70–77CrossRefGoogle Scholar
  35. 35.
    Zhou P, Cai S, Jiang S, Liu Z (2018) Exponential cluster synchronization in directed community networks via adaptive nonperiodically intermittent pinning control. Physica A 492:1267–1280MathSciNetCrossRefGoogle Scholar
  36. 36.
    Zhang D, Mei J, Miao P (2017) Global finite-time synchronization of different dimensional chaotic systems. Appl Math Model 48:303–315MathSciNetCrossRefGoogle Scholar
  37. 37.
    Ren H, Deng F, Peng Y (2018) Finite time synchronization of Markovian jumping stochastic complex dynamical systems with mix delays via hybrid control strategy. Neurocomputing 272:683–693CrossRefGoogle Scholar
  38. 38.
    Qiu S, Huang Y, Ren S (2018) Finite-time synchronization of multi-weighted complex dynamical networks with and without coupling delay. Neurocomputing 275:1250–1260CrossRefGoogle Scholar
  39. 39.
    Mei J, Jiang M, Xu W, Wang B (2013) Finite-time synchronization control of complex dynamical networks with time delay. Commun Nonlinear Sci Numer Simulat 18:2462–2478MathSciNetzbMATHCrossRefGoogle Scholar
  40. 40.
    Mei J, Jiang M, Wang X, Han J, Wang S (2014) Finite-time synchronization of drive-response systems via periodically intermittent adaptive control. J Frankl Inst 351:2691–2710MathSciNetzbMATHCrossRefGoogle Scholar
  41. 41.
    Mei J, Jiang M, Wu Z, Wang X (2014) Periodically intermittent controlling for finite-time synchronization of complex dynamical networks. Nonlinear Dyn 79:295–305zbMATHCrossRefGoogle Scholar
  42. 42.
    Yang F, Mei J, Wu Z (2016) Finite-time synchronisation of neural networks with discrete and distributed delays via periodically intermittent memory feedback control. IET Control Theory Appl 10:1630–1640MathSciNetCrossRefGoogle Scholar
  43. 43.
    Zhao H, Li L, Xiao J, Yang Y, Zheng M (2017) Parameters tracking identification based on finite-time synchronization for multi-links complex network via periodically switch control. Chaos Solitons Fractals 104:268–281MathSciNetzbMATHCrossRefGoogle Scholar
  44. 44.
    Cheng L, Yang Y, Li L, Sui X (2018) Finite-time hybrid projective synchronization of the drive-response complex networks with distributed-delay via adaptive intermittent control. Physica A 500:273–286MathSciNetCrossRefGoogle Scholar
  45. 45.
    Liu M, Jiang H, Hu C (2017) Finite-time synchronization of delayed dynamical networks via aperiodically intermittent control. J Frankl Inst 354(13):5374–5397MathSciNetzbMATHCrossRefGoogle Scholar
  46. 46.
    Zhang D, Shen Y, Mei J (2017) Finite-time synchronization of multi-layer nonlinear coupled complex networks via intermittent feedback control. Neurocomputing 225:129–138CrossRefGoogle Scholar
  47. 47.
    Mei J, Jiang M, Wang J (2013) Finite-time structure identification and synchronization of drive-response systems with uncertain parameter. Commun Nonlinear Sci Numer Simulat 18:999–1015MathSciNetzbMATHCrossRefGoogle Scholar
  48. 48.
    Fan Y, Liu H, Zhu Y, Mei J (2016) Fast synchronization of complex dynamical networks with time-varying delay via periodically intermittent control. Neurocomputing 205:182–194CrossRefGoogle Scholar
  49. 49.
    Liu X, Chen T (2015) Synchronization of linearly coupled networks with delays via aperiodically intermittent pinning control. IEEE Trans Neural Netw Learn Syst 26(10):2396–2407MathSciNetCrossRefGoogle Scholar
  50. 50.
    Zhang G, Shen Y (2015) Exponential stabilization of memristor-based chaotic neural networks with time-varying delays via intermittent control. IEEE Trans Neural Netw Learn Syst 26:1431–1441MathSciNetCrossRefGoogle Scholar
  51. 51.
    Kang Y, Qin J, Ma Q, Gao H, Zheng W (2018) Cluster synchronization for interacting clusters of nonidentical nodes via intermittent pinning control. IEEE Trans Neural Netw Learn Syst 29(5):1747–1759MathSciNetCrossRefGoogle Scholar
  52. 52.
    Hu C, Yu J (2016) Generalized intermittent control and its adaptive strategy on stabilization and synchronization of chaotic systems. Chaos Solitons Fractals 91:262–269MathSciNetzbMATHCrossRefGoogle Scholar
  53. 53.
    Guan Z, Yue D, Hu B, Li T, Liu F (2017) Cluster synchronization of coupled genetic regulatory networks with delays via aperiodically adaptive intermittent control. IEEE Trans Nanobiosci 16(7):585–599CrossRefGoogle Scholar
  54. 54.
    Hu A, Cao J (2017) Consensus of multi-agent systems via intermittent event-triggered control. Int J Syst Sci 48(2):280–287MathSciNetzbMATHCrossRefGoogle Scholar
  55. 55.
    Xiong W, Patel R, Cao J, Zheng WX (2017) Synchronization of hierarchical time-varying neural networks based on asynchronous and intermittent sampled-data control. IEEE Trans Neural Netw Learn Syst 28(11):2837–2843MathSciNetCrossRefGoogle Scholar
  56. 56.
    Zheng S (2016) Intermittent impulsive projective synchronization in time-varying delayed dynamical network with variable structures. Complexity 21:547–556MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Yihan Fan
    • 1
    • 2
  • Jun Mei
    • 3
  • Hongmei Liu
    • 1
    • 2
  • Yuling Fan
    • 4
    Email author
  • Fuxiang Liu
    • 1
    • 2
  • Yanjuan Zhang
    • 1
    • 2
  1. 1.College of ScienceChina Three Gorges UniversityYichangChina
  2. 2.Three Gorges Mathematical Research CenterChina Three Gorges UniversityYichangChina
  3. 3.School of Mathematics and StatisticsSouth-Central University for NationalitiesWuhanChina
  4. 4.College of InformaticsHuazhong Agricultural UniversityWuhanChina

Personalised recommendations