Neural Processing Letters

, Volume 50, Issue 3, pp 2701–2715 | Cite as

The Parameter Identification of PMSM Based on Improved Cuckoo Algorithm

  • Zhongqiang WuEmail author
  • Chunqi Du


In view of the multi-parameter identification problem of permanent magnet synchronous motor, a kind of parameter identification method was proposed based on an improved cuckoo search algorithm. Cuckoo search algorithm has the advantages of simple, less parameters, fast convergence etc., but it also has the defects of premature convergence and low computation accuracy. In view of the deficiency of cuckoo search algorithm, the fuzzy reasoning based on the cloud membership was designed to adjust the probability of an alien egg being discovered by host birds and adaptive variable step method was used to adjust the step size of Lévy flights. The improved algorithm can accelerate the convergence speed and improve the local and global optimizing ability by increasing the diversity of the population. The multi-parameter identification results of permanent magnet synchronous motor show that the improved cuckoo algorithm can effectively identify the motor parameters, and compared with the traditional cuckoo algorithm, the effectiveness and superior performance are tested.


Permanent magnet synchronous motor Cloud membership Cuckoo algorithm Parameter identification Fuzzy 



  1. 1.
    Faustner D, Kemmetmüller W, Kugi A (2015) Magnetic equivalent circuit modeling of a saturated surface-mounted permanent magnet synchronous machine. IFAC-Pap Line 48(1):360–365CrossRefGoogle Scholar
  2. 2.
    Senjyu T, Noguchi Y, Urasaki N et al. (2007) Parameter identification for interior permanent-magnet synchronous motor. In: International conference on electrical machines and systems (ICEMS), 2007. IEEE, pp 566–571Google Scholar
  3. 3.
    Karagoz S, Yildiz AR (2017) A comparison of recent metaheuristic algorithms for crashworthiness optimisation of vehicle thin-walled tubes considering sheet metal forming effects. Int J Veh Des 73(1–3):179–188CrossRefGoogle Scholar
  4. 4.
    Sultan B, Yildiz AR (2018) Comparison of grey wolf, whale, water cycle, ant lion and sine-cosine algorithms for the optimization of a vehicle connecting rod. Mater Testing 60(3):311–315. CrossRefGoogle Scholar
  5. 5.
    Yıldız SB, Yıldız AR (2017) Moth-flame optimization algorithm to determine optimal machining parameters in manufacturing processes. Mater Testing 59(5):425–429CrossRefGoogle Scholar
  6. 6.
    Yıldız AR, Kurtulus E, Demirci E (2016) Optimization of thin-wall structures using hybrid gravitational search and Nelder-Mead algorithm. Mater Testing 58(1):75–78CrossRefGoogle Scholar
  7. 7.
    Pholdee N, Bureerat S, Yildiz AR (2017) Hybrid real-code population-based incremental learning and differential evolution for many-objective optimisation of an automotive floor-frame. Int J Veh Des 73(1–3):20–53CrossRefGoogle Scholar
  8. 8.
    Karagöz S, Yildiz AR (2017) A comparative investigation of eight recent population-based optimisation algorithms for mechanical and structural design problems. Int J Veh Des 73(1–3):208–218Google Scholar
  9. 9.
    Morteza Kiani A, Yildiz AR (2016) Comparative study of non-traditional methods for vehicle crashworthiness and NVH optimization. Arch Comput Methods Eng 23(4):723–734MathSciNetCrossRefGoogle Scholar
  10. 10.
    Yildiz BS, Lekesiz H, Yildiz AR (2016) Structural design of vehicle components using gravitational search and charged system search algorithms. Mater Testing 58(1):79–81CrossRefGoogle Scholar
  11. 11.
    Yildiz AR (2013) Comparison of evolutionary based optimization algorithms for structural design optimization. Eng Appl Artif Intell 26(1):327–333CrossRefGoogle Scholar
  12. 12.
    Liu ZH, Zhang J, Zhou SW et al (2013) Coevolutionary particle swarm optimization using AIS and its application in multiparameter estimation of PMSM. IEEE Trans Cybern 43(6):1921–1935CrossRefGoogle Scholar
  13. 13.
    Liu ZH, Wei HL, Li XH et al (2018) Global identification of electrical and mechanical parameters in PMSM drive based on dynamic self-learning PSO. IEEE Trans Power Electron 33(12):10858–10871CrossRefGoogle Scholar
  14. 14.
    Liu ZH, Li XH, Wu LH et al (2015) GPU-Accelerated parallel coevolutionary algorithm for parameters identification and temperature monitoring in permanent magnet synchronous machines. IEEE Trans Ind Inf 11(5):1220–1230CrossRefGoogle Scholar
  15. 15.
    Liu ZH, Wei HL, Zhong QC et al (2017) Parameter estimation for VSI-Fed PMSM based on a dynamic PSO with learning strategies. IEEE Trans Power Electron 32(4):3154–3165CrossRefGoogle Scholar
  16. 16.
    Omar SH, Roberto MC, Jose RM et al (2015) Parameter identification of PMSMs using experimental measurements and a PSO algorithm. IEEE Trans Instrum Meas 64(8):2146–2154CrossRefGoogle Scholar
  17. 17.
    Liu L, Liu W, Cartes DA (2008) Particle swarm optimization-based parameter identification applied to permanent magnet synchronous motors. Eng Appl Artif Intell 21(7):1092–1100CrossRefGoogle Scholar
  18. 18.
    Underwood SJ, Husain I (2010) Online parameter estimation and adaptive control of permanent-magnet synchronous machines. IEEE Trans Ind Electron 57(7):2435–2443CrossRefGoogle Scholar
  19. 19.
    Rashed M, MacConnell PFA, Acarnley P (2007) Sensorless indirect-rotor-field-orientation speed control of a permanent-magnet synchronous motor with stator-resistance estimation. IEEE Trans Ind Electron 54(3):1664–1675CrossRefGoogle Scholar
  20. 20.
    Boileau T, Nahid-Mobarakeh B, Meibody-Tabar F (2008) On-line identification of PMSM parameters: model-reference vs EKF. In: IEEE industry applications society annual meeting (IAS’08), 2008, pp 1–8Google Scholar
  21. 21.
    Jaramillo R, Alvarez R, Urdenas V et al. (2004) Identification of induction motor parameter using an extended Kalman filter. In: 1st international conference on electrical and electronics engineering (ICEEE), IEEE, 2004, pp 584–588Google Scholar
  22. 22.
    Deyi L, Haijun M, Xuemei S (1995) Membership clouds and membership cloud generators. J Comput Res Dev 32(6):15–20Google Scholar
  23. 23.
    Chunyu J, Tao B, Fajun C et al (2014) Hydraulic roll-bending flatness control based on qualitative reasoning of cloud model. China Mech Eng 10:004Google Scholar
  24. 24.
    Morimoto S, Shimmei A, Sanada M et al (2006) Position and speed sensorless control system of permanent magnet synchronous motor with parameter identification. IEE J Trans Ind Appl 126:748–755CrossRefGoogle Scholar
  25. 25.
    Aranovskiy S, Bobtsov AA, Pyrkin AA et al (2015) Flux and position observer of permanent magnet synchronous motors with relaxed persistency of excitation conditions. IFAC-Pap Line 48(11):301–306CrossRefGoogle Scholar
  26. 26.
    Liu ZH, Zhang J, Li XH et al (2012) Immune co-evolution particle swarm optimization for permanent magnet synchronous motor parameter identification. Acta Automatica Sinica 38(10):1698–1708CrossRefGoogle Scholar
  27. 27.
    Yang XS, Deb S (2013) Multiobjective cuckoo search for design optimization. Comput Oper Res 40(6):1616–1624MathSciNetCrossRefGoogle Scholar
  28. 28.
    Wang QX, Chu ZN (2015) Parameters optimization of PID controller based on dynamic cuckoo search algorithm. Comput Meas Control 23(4):1215–1217Google Scholar
  29. 29.
    Yildiz AR (2013) Cuckoo search algorithm for the selection of optimal machining parameters in milling operations. Int J Adv Manuf Technol 64(1–4):55–61CrossRefGoogle Scholar
  30. 30.
    Chandrasekaran K, Simon SP (2012) Multi-objective scheduling problem: hybrid approach using fuzzy assisted cuckoo search algorithm. Swarm Evolut Comput 5:1–16CrossRefGoogle Scholar
  31. 31.
    Silva Filho TM, Pimentel BA, Souza RMCR et al (2015) Hybrid methods for fuzzy clustering based on fuzzy c-means and improved particle swarm optimization[J]. Expert Syst Appl 42(17):6315–6328CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.The College of Electrical EngineeringYanshan UniversityQinhuangdaoChina

Personalised recommendations