Application of Strong Arcs in m-Polar Fuzzy Graphs

  • Sonia Mandal
  • Sankar Sahoo
  • Ganesh GhoraiEmail author
  • Madhumangal Pal


Recently, m-polar fuzzy graph (mPF graph) becomes a growing research topic as the generalization of fuzzy graph. In this paper, at first mPF path, mPF cycle in an mPF graph are defined. The strength of connectedness of mPF path is introduced. Next, strongest and strong mPF path, mPF bridges, mPF cut nodes, mPF tree and mPF forests in an mPF graph are considered. Also, it is proved that an arc of mPF tree is strong mPF arc if and only if it is an mPF bridge. Finally, mPF end nodes in an mPF graph is defined and investigated some properties of it. An application of strongest path problem in 3-polar fuzzy graph is also given at the end.


mPF graphs Strongest and strong mPF path mPF bridges mPF cut nodes mPF trees mPF forests 



The authors are highly thankful to the honorable Editor in Chief, Associate Editor and the honorable reviewers for their valuable suggestions which significantly improved the quality and representation of the paper. Financial support of first author by University Grants Commission, New Delhi, India(Fl-17.112014-15/RGNF-2014-15-SC-WES-63919(SA-Ill/Website)) is thankfully acknowledged.


  1. 1.
    Zhang WR (1994) Bipolar fuzzy sets and relations: a computational framework for cognitive modeling and multiagent decision analysis. In: Proceedings of IEEE conference, pp 305–309Google Scholar
  2. 2.
    Zhang WR (1998) Bipolar fuzzy sets. In: Proceedings of IEEE conference, pp 835–840Google Scholar
  3. 3.
    Chen J, Li S, Ma S, Wang X (2014) \(m\)-polar fuzzy sets: an extension of bipolar fuzzy sets. Sci World J, Article Id 416530. Google Scholar
  4. 4.
    Kauffman A (1973) Introduction a la theorie des sous-emsembles flous, vol 1. Masson et Cie, Paris, p 503Google Scholar
  5. 5.
    Zadeh LA (1965) Fuzzy sets. Inf Control 8(3):338–353CrossRefGoogle Scholar
  6. 6.
    Zadeh LA (1971) Similarity relations and fuzzy ordering. Inf Sci 3(2):177–200MathSciNetCrossRefGoogle Scholar
  7. 7.
    Zadeh LA (2008) Is there a need for fuzzy logical? Inf Sci 178(13):2751–2779CrossRefGoogle Scholar
  8. 8.
    Rosenfeld A (1975) Fuzzy graphs. In: Zadeh LA, Fu KS, Shimura M (eds) Fuzzy sets and their applications. Academic Press, New York, pp 77–95Google Scholar
  9. 9.
    Bhutani KR (1989) On automorphism of fuzzy graphs. Pattern Recogn Lett 9(3):159–162CrossRefGoogle Scholar
  10. 10.
    Samanta S, Pal M, Pal A (2014) New concepts of fuzzy planar graph. Int J Adv Res Artif Intell 3(1):52–59Google Scholar
  11. 11.
    Samanta S, Pal M (2015) Fuzzy planar graphs. IEEE Trans Fuzzy Syst 23(6):1936–1942CrossRefGoogle Scholar
  12. 12.
    Pramanik T, Samanta S, Pal M (2016) Interval-valued fuzzy planar graphs. Int J Mach Learn Cybern 7(4):653–664CrossRefGoogle Scholar
  13. 13.
    Samanta S, Pal M (2013) Fuzzy \(k\)-competition graphs and \(p\)-competitions fuzzy graphs. Fuzzy Inf Eng 5(2):191–204MathSciNetCrossRefGoogle Scholar
  14. 14.
    Samanta S, Akram M, Pal M (2015) \(m\)-step fuzzy competition graphs. J Appl Math Comput 47(1):461–472MathSciNetCrossRefGoogle Scholar
  15. 15.
    Talebi AA, Rashmanlou H (2014) Complement and isomorphism on bipolar fuzzy graphs. Fuzzy Inf Eng 6(4):505–522MathSciNetCrossRefGoogle Scholar
  16. 16.
    Ghorai G, Pal M (2018) A note on “Regular bipolar fuzzy graphs”. Neural Comput Appl 21(1), (2012) 197–205. Neural Comput Appl 30(5):1569–1572Google Scholar
  17. 17.
    Yang HL, Li SG, Yang WH, Lu Y (2013) Notes on “bipolar fuzzy graphs”. Inf Sci 242:113–121MathSciNetCrossRefGoogle Scholar
  18. 18.
    Rashmanlou H, Samanta S, Pal M, Borzooei RA (2015) A study on bipolar fuzzy graphs. J Intell Fuzzy Syst 28(2):571–580MathSciNetzbMATHGoogle Scholar
  19. 19.
    Rashmanlou H, Samanta S, Pal M, Borzooei RA (2015) Bipolar fuzzy graphs with categorical properties. Int J Comput Intell Syst 8(5):808–818CrossRefGoogle Scholar
  20. 20.
    Akram M (2011) Bipolar fuzzy grpahs. Inf Sci 181(24):5548–5564CrossRefGoogle Scholar
  21. 21.
    Akram M (2013) Bipolar fuzzy grpahs with applications. Knowl Based Syst 39:1–8CrossRefGoogle Scholar
  22. 22.
    Ghorai G, Pal M, Rashmanlou H, Borzooei RA (2017) New concepts of regularity in product \(m\)-polar fuzzy graphs. Int J Math Comput 28(4):9–20Google Scholar
  23. 23.
    Ghorai G, Pal M (2017) Ceratin types of product bipolar fuzzy graphs. Int J Appl Comput Math 3(2):605–619MathSciNetCrossRefGoogle Scholar
  24. 24.
    Ghorai G, Pal M (2016) Faces and dual of \(m\)-polar fuzzy planar graphs. J Intell Fuzzy Syst 31(3):2043–2049CrossRefGoogle Scholar
  25. 25.
    Ghorai G, Pal M (2016) Some isomorphic properties of \(m\)-polar fuzzy graphs with applications. SpringerPlus 5(1):1–21CrossRefGoogle Scholar
  26. 26.
    Ghorai G, Pal M (2017) Planarity in vague graphs with application. Acta Math Acad Paedagog Nyregyhziensis 33(2):147–162Google Scholar
  27. 27.
    Ghorai G, Pal M (2016) A study on \(m\)-polar fuzzy planar graphs. Int J Comput Sci Math 7(3):283–292MathSciNetCrossRefGoogle Scholar
  28. 28.
    Ghorai G, Pal M (2016) Regular product vague graphs and product vague line graphs. Cogent Math 3(1):1–13MathSciNetCrossRefGoogle Scholar
  29. 29.
    Ghorai G, Pal M (2015) On some operations and density of \(m\)-polar fuzzy graphs. Pac Sci Rev A Nat Sci Eng 17(1):14–22Google Scholar
  30. 30.
    Ghorai G, Pal M (2016) Some properties of \(m\)-polar fuzzy graphs. Pac Sci Rev A Nat Sci Eng 18(1):38–46zbMATHGoogle Scholar
  31. 31.
    Ghorai G, Pal M (2017) Novel concepts of strongly edge irregular \(m\)-polar fuzzy graphs. Int J Appl Comput Math 3(4):3321–3332MathSciNetCrossRefGoogle Scholar
  32. 32.
    Sahoo S, Pal M (2015) Intuitionistic fuzzy competition graph. J Appl Math Comput 52(1):37–57MathSciNetzbMATHGoogle Scholar
  33. 33.
    Sahoo S, Pal M (2017) Intuitionistic fuzzy tolerance graphs with application. J Appl Math Comput 55(1):495–511MathSciNetCrossRefGoogle Scholar
  34. 34.
    Sahoo S, Pal M (2015) Different types of products on intuitionistic fuzzy graphs. Pac Sci Rev A Nat Sci Eng 17(3):87–96Google Scholar
  35. 35.
    Sahoo S, Pal M (2016) Product of intuitionistic fuzzy graphs and degree. J Intell Fuzzy Syst 32(1):1059–1067CrossRefGoogle Scholar
  36. 36.
    Tong S, Sun K, Sui S (2018) Observer-based adaptive fuzzy decentralized optimal control design for strict-feedback nonlinear large-scale systems. IEEE Trans Fuzzy Syst 26(2):569–584CrossRefGoogle Scholar
  37. 37.
    Sun K, Li Y, Tong S (2017) Fuzzy adaptive output feedback optimal control design for strict-feedback nonlinear systems. IEEE Trans Syst Man Cybern Syst 47(1):33–44CrossRefGoogle Scholar
  38. 38.
    Sun K, Sui S, Tong S (2018) Fuzzy adaptive decentralized optimal control for strict feedback nonlinear large-scale systems. IEEE Trans Cybern 48(4):1326–1339CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Applied Mathematics with Oceanology and Computer ProgrammingVidyasagar UniversityMidnaporeIndia

Personalised recommendations