Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Post-tetanic Potentiation and Depression in Hippocampal Neurons in a Rat Model of Alzheimer’s Disease: Effects of Teucrium Polium Extract

  • 1 Accesses

The plant Teucrium polium (T.p.) possesses a wide range of pharmacological activities due to the presence, in particular, of different phytochemicals, phenols and flavonoids. We examined the effects of the T.p. extract on impulse activity of hippocampal neurons in rats with a model of Alzheimer’s disease. Adult albino rats were divided into three groups (5 animals in each). The control group C obtained intracerebroventricular (i.c.v.) infusions of saline, animals of group Aβ were i.c.v. infused with amyloid β peptide 25–35, Aβ(25–35), and group Aβ+T.p. was treated by both Aβ(25–35) infusions and introductions of the T.p. extract. In group Aβ, a greater proportion of hippocampal neurons with post-tetanic depression after high-frequency stimulation of the entorhinal cortex, lower values of the frequency of background activity generated by the above neurons, and relatively weaker modifications of spike activity (post-tetanic potentiation and depression) were observed. Daily administrations of the T.p. extract partially but considerably reversed the above-mentioned negative shifts in spike activity of hippocampal neurons caused by Aβ(25–35). We suggest that T.p. extract containing important phytochemicals is capable of ameliorating the memory dysfunction caused by Aβ(25–35) via blocking amyloid deposition and a positive influence on the functions of hippocampal neurons.

This is a preview of subscription content, log in to check access.


  1. 1.

    M. D. Ikonomovic, W. E. Klunk, E. E. Abrahamson, et al., “Post-mortem correlates of in vivo PiB-PET amyloid imaging in a typical case of Alzheimer’s disease,” Brain, 131, Pt. 6, 1630–1645 (2008).

  2. 2.

    I. Rivera, R. Capone, D. M. Cauvi, et al., “Modulation of Alzheimer’s amyloid β peptide oligomerization and toxicity by extracellular Hsp70,” Cell Stress Chaperones, 23, No. 2, 269–279 (2017).

  3. 3.

    V. Cavallucci, M. D’Amelio, and E. Cecconi, “Aβ toxicity in Alzheimer’s disease,” Mol. Neurobiol., 45, No. 2, 366–378 (2012).

  4. 4.

    S. W. Scheff and D. A. Price, “Synaptic pathology in Alzheimer’s disease: a review of ultrastructural studies,” Neurobiol. Aging, 24, No. 8, 1029–1046 (2003).

  5. 5.

    T. Arendt, “Synaptic degeneration in Alzheimer’s disease,” Acta Neuropathol., 118, No. 1, 167–179 (2009).

  6. 6.

    M. H. Tran, K. Yamada, and T. Nabeshima, “Amyloid beta-peptide induces cholinergic dysfunction and cognitive deficits: a minireview,” Peptides, 23, No. 7, 1271–1283 (2002).

  7. 7.

    A. Itoh, A. Nitta, M. Nadai, et al., “Dysfunction of cholinergic and dopaminergic neuronal systems in betaamyloid protein-infused rats,” J. Neurochem., 66, No. 3, 1113–1117 (1996).

  8. 8.

    N. Origlia, M. Righi, S. Capsoni, et al., “Receptor for advanced glycation end product-dependent activation of p38 mitogen-activated protein kinase contributes to amyloid-beta-mediated cortical synaptic dysfunction,” J. Neurosci., 28, No. 13, 3521–3530 (2008).

  9. 9.

    J. Kim, H. J. Lee, and K. W. Lee, “Naturally occurring phytochemicals for the prevention of Alzheimer’s disease,” J. Neurochem., 112, No. 6, 1415–1430 (2010).

  10. 10.

    P. Thomas, Y. J. Wang, J. H. Zhong, et al., “Grape seed polyphenols and curcumin reduce genomic instability events in a transgenic mouse model for Alzheimer’s disease,” Mutat. Res., 661, Nos. 1–2, 25–34 (2009).

  11. 11.

    R. Flamini, “Recent applications of mass spectrometry in the study of grape and wine polyphenols,” ISRN Spectrosc., 2013, ID 813563, 45 pages (2013).

  12. 12.

    F. Guedj, C. Sébrié, I. Rivals, et al., “Green tea polyphenols rescue of brain defects induced by overexpression of DYRK1A,” PloS One, 4, No. 2, e4606 (2009).

  13. 13.

    L. G. Korkina, “Phenylpropanoids as naturally occurring antioxidants: from plant defense to human health,” Cell. Mol. Biol. (Noisy-le-grand), 53, No. 1, 15–25 (2007).

  14. 14.

    A. M. Galstyan, A. S. Shashkov, G. B. Oganesyan, et al., “Structure of two new diterpenoids from Teucrium polium,” Chem. Nat. Compd, 28, No. 5, 439–443 (1992).

  15. 15.

    G. B. Oganesyan, A. M. Galstyan, V. A. Mnatsakanyan, et al., “Phenylpropanoid glycosides of Teucrium polium,” Chem. Nat. Compd., 27, No. 5, 556–559 (1991).

  16. 16.

    H. M. Galstyan, “Standardization of felty germander (Teucrium polium L.) by natural phytoestrogens: Phenylpropanoid and flavonoid glycosides,” NAMJ, 8, No. 2, 53–58. (2014).

  17. 17.

    K. V. Simonyan and V. A, Chavushyan, “Protective effects of hydroponic Teucrium polium on hippocampal neurodegeneration in ovariectomized rats,” BMC Complem. Altern. Med., 16, No. 1, 415 (2016).

  18. 18.

    N. E. Tadevosyan, H. M. Galstyan, A. A. Tumanyan, and B. B. Forgan. “Dynamics of cognitive processes in middle-aged women treated with a fraction derived from hydroponic Teucrium polium Lamiaceae,” Neurosci. Behav. Physiol., 49, 484–489, (2019).

  19. 19.

    T. Maurice T. P. Su, and A. Privat, “Sigma1 (sigma 1) receptor agonists and neurosteroids attenuate beta25–35-amyloid peptide-induced amnesia in mice through a common mechanism,” Neuroscience, 83, No. 2, 413–428 (1998).

  20. 20.

    G. Biringanine, M. T. Chiarelli, M. Faes, and P. Duez, “A validation protocol for the HPTLC standardization of herbal products: application to the determination of acteoside in leaves of Plantago palmata Hook. f.s.,” Talanta, 69, No. 2, 418–424 (2006).

  21. 21.

    H. M. Galstyan, L. V. Revazova, and H. V. Topchyan, “Digital indices and microscopic analyses of wild growing and overgrowing of Teucrium polium L. in hydroponic conditions,” New Arm. Med J., 4, No. 3, 104 (2010).

  22. 22.

    H. M. Galstyan, “Standardization of Teucrium polium L. by natural phytoestrogens phenylpropanoid glycosids and flavonoids,” New Arm. Med J., 8, No. 2б 53–58 (2014).

  23. 23.

    V. Chavushyan, K. Simonyan, and H. Galstyan, “Toxicity studies of Teucrium polium Lamiaceae growing in nature and in culture,” The Second Internat Symp “Biopharma 2010: from science to industry”, May 17–20, Armenia, Yerevan: 2010. p. 11, 45.

  24. 24.

    G. Paxinos and C. Watson, The Rat Brain in Stereotaxic Coordinates (6th ed.), Academic Press (2007)

  25. 25.

    D. B Freir, C. Holscher, and C. E. Herron, “Blockade of long-term potentiation by beta-amyloid peptides in the CA1 region of the rat hippocampus in vivo,” J. Neurophysiol., 85, No. 2, 708–713 (2001).

  26. 26.

    T. Ondrejcak , I. Klyubin, N. W Hu, et al., “Alzheimer’s disease amyloid β-protein and synaptic function,” Neuromol. Med., 12, No. 1, 13–26 (2010).

  27. 27.

    M. V. Storozhuk, S. Y. Ivanova, T. A. Pivneva, et al., “Post-tetanic depression of GABAergic synaptic transmission in rat hippocampal cell cultures,” Neurosci. Lett., 323, No. 1, 5–8 (2002).

  28. 28.

    J. S. Rothman, L. Cathala, V. Steuber, and R. A. Silver, “Synaptic depression enables neuronal gain control,” Nature, 457, 1015–1018 (2009).

  29. 29.

    F. Pouille and M. Scanziani, “Routing of spike series by dynamic circuits in the hippocampus,” Nature, 429, 717–723 (2004).

  30. 30.

    R. S. Zucker and W. G. Regehr, “Short-term synaptic plasticity,” Annu. Rev. Physiol., 64, 355 405 (2002).

  31. 31.

    T. C. Sudhof and J. E. Rothman, “Membrane fusion: Grappling with SNARE and SM proteins,” Science, 323, No. 5913, 474– 477 (2009).

  32. 32.

    K. L. Magleby, “Short-term changes in synaptic efficacy,” In Synaptic Function (Edelman G. M. et al., eds.), pp. 21–56. Wiley, New York (1987).

  33. 33.

    N. Korogod, X. Lou, and R. Schneggenburger, “Presynaptic Ca2+ requirements and developmental regulation of posttetanic potentiation at the calyx of Held,” J. Neurosci., 25, No. 21, 5127–5137 (2005).

  34. 34.

    W. A. Catterall and A. P. Few, “Calcium channel regulation and presynaptic plasticity,” Neuron, 59, No. 6, 882–901 (2008).

  35. 35.

    B. L. Sabatini and W. G. Regehr, “Control of neurotransmitter release by presynaptic waveform at the granule cell to Purkinje cell synapse,” J. Neurosci., 17, No. 10, 3425–3435 (1997).

  36. 36.

    J. R. Geiger and P. Jonas, “Dynamic control of presynaptic Ca(2+) inflow by fast-inactivating K(+) channels in hippocampal mossy fiber boutons,” Neuron, 28, No. 3, 927–939 (2000).

  37. 37.

    R. L. Habets and J. G. Borst, “An increase in calcium influx contributes to post-tetanic potentiation at the rat calyx of Held synapse,” J. Neurophysiol., 96, No. 6, 2868–2876 (2006).

  38. 38.

    M. Beierlein, D. Fioravante, and W. G. Regehr, “Differential expression of posttetanic potentiation and retrograde signaling mediate target-dependent short-term synaptic plasticity,” Neuron, 54, No. 6, 949–959 (2007).

  39. 39.

    F. Fiumara, C. Milanese, A. Corradi, et al., “Phosphorylation of synapsin domain A is required for posttetanic potentiation,” J. Cell Sci., 120, Pt. 18, 3228–3237 (2007).

  40. 40.

    E. Karran, M. Mercken, and B. De Strooper, “The amyloid cascade hypothesis for Alzheimer’s disease: An appraisal for the development of therapeutics,” Nat. Rev. Drug Discov., 10, No. 9, 698 712 (201 1).

  41. 41.

    D. B. Freir and C. E. Herron, “Inhibition of L-type voltage dependent calcium channels causes impairment of long-term potentiation in the hippocampal CA1 region in vivo,” Brain Res., 967, Nos. 1–2, 27–36 (2003).

  42. 42.

    C. Holscher, S. Gengler, V. A. Gault, et al., “Soluble beta-amyloid[25-35] reversibly impairs hippocampal synaptic plasticity and spatial learning,” Eur. J. Pharmacol., 561, Nos. 1–3, 85–90 (2007).

  43. 43.

    S. Gengler, V. A. Gault, P. Harriott, and C. Hölscher, “Impairments of hippocampal synaptic plasticity induced by aggregated beta-amyloid (25-35) are dependent on stimulation-protocol and genetic background,” Exp. Brain Res., 179, No. 4, 621–630 (2007).

  44. 44.

    I. Orhan and M. Aslan, “Appraisal of scopolamineinduced antiamnesic effect in mice and in vitro antiacetylcholinesterase and antioxidant activities of some traditionally used Lamiaceae plants,” J. Ethnopharmacol., 122, No. 2, 327–332 (2009).

  45. 45.

    P. Hasanein and S. Shahidi, “Preventive effect of Teucrium polium on learning and memory deficits in diabetic rats,” Med. Sci. Monit., 18, No. 1, BR41–BR46 (2012).

  46. 46.

    R. Alcázar, M. C. De la Torre, B. Rodríguez, et al., “Neoclerodane diterpenoids from three species of Teucrium,” Phytochemistry, 31, No. 11, 3957–3960 (1992).

  47. 47.

    S. Bahramikia and R. Yazdanparast, “Phytochemistry and medicinal properties of Teucrium polium L. (Lamiaceae),” Phytother. Res., 26, No. 11, 1581–1593 (2012).

  48. 48.

    M. Rafieian-Kopaei and H. Nasri, “Comment on preventive effect of Teucrium polium on learning and memory deficits in diabetic rats,” Med. Sci. Monit. Basic Res., 19, 208–209 (2013).

  49. 49.

    J. Lin, L. Gao, S. X. Huo, et al., “Effect of acteoside on learning and memory impairment induced by scopolamine in mice,” China J. Chin. Mater. Med., 37, No. 19, 2956–2959 (2012).

  50. 50.

    L. Gao, X. Peng, S. Huo, et al., “Acteoside enhances expression of neurotrophin-3 in brain tissues of subacute aging mice induced by d-galactose combined with aluminum trichloride,” Chin. J. Cell. Mol. Immunol., 30, No. 10, 1022–1025 (2014).

Download references

Author information

Correspondence to K. V. Simonyan.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Simonyan, K.V., Galstyan, H.M. & Chavushyan, V.A. Post-tetanic Potentiation and Depression in Hippocampal Neurons in a Rat Model of Alzheimer’s Disease: Effects of Teucrium Polium Extract. Neurophysiology (2020). https://doi.org/10.1007/s11062-020-09827-8

Download citation


  • model of Alzheimer’s disease
  • amyloid β peptide (25–35)
  • intracerebroventricular
  • infusions, hippocampal neurons, entorhinal cortex, tetanic potentiation and depression, posttetanic
  • potentiation and depression.