, Volume 51, Issue 2, pp 141–149 | Cite as

Ceruloplasmin: Its Role in the Physiological and Pathological Processes

  • V. V. OrzheshkovskyiEmail author
  • M. A. Trishchynska

Literature data on the role of the copper-containing metalloprotein ceruloplasmin (CP) in physiological and pathological processes, namely in health and in Wilson’s disease and other specific copper- and iron-related metabolic diseases, are reviewed. The known and supposed roles of CP in neurodegenerative, demyelinating, and cardiovascular diseases, cerebral ischemia, stroke, and traumatic CNS injuries are also analyzed.


metalloproteins ceruloplasmin (CP) copper- and iron-related metabolic diseases neurodegenerative diseases cerebral ischemia stroke CNS injury 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    I. N. Shanin, Antioxidant Therapy in Clinical Practice [in Russian], ÉLBI, St. Petersburg (2003).Google Scholar
  2. 2.
    S. Silbernagl and F. Lang, Color Atlas of Pathophysiology, Thieme, Stuttgart, New York (2016).Google Scholar
  3. 3.
    D. V. Grigorieva, I. V. Gorudko, V. A. Kostevich, et al., “Myeloperoxidase activity in blood plasma as a criterion of therapy for patients with cardiovascular disease,” Biomed. Khim., 62, No. 3, 318–324 (2016).CrossRefGoogle Scholar
  4. 4.
    A. V. Sokolov, E. T. Zakahrova, V. A. Kostevich, et al., “Lactoferrin, myeloperoxidase, and ceruloplasmin: complementary gearwheels cranking physiological and pathological processes,” Biometals, 27, No. 5, 815–828 (2014).CrossRefGoogle Scholar
  5. 5.
    D. D. Hou, R. Z. Zhu, Z. Sun, et al., “Serum proteomics analysis in rats with immunosuppression induced by chronic stress,” Scand. J. Immunol., 84, No. 3, 165–173 (2016).CrossRefGoogle Scholar
  6. 6.
    V. A. Kostevich, A. V. Sokolov, S. O. Kozlov, et al., “Functional link between ferroxidase activity of ceruloplasmin and protective effect of apo-lactoferrin: studying rats kept on a silver chloride diet,” Biometals, 29, No. 4, 691–704 (2016).CrossRefGoogle Scholar
  7. 7.
    A. Ashok, S. Karmakar, R. Chandel, et al., “Prion protein modulates iron transport in the anterior segment: Implications for ocular iron homeostasis and prion transmission,” Exp. Eye Res., 175, 1–13 (2018).CrossRefGoogle Scholar
  8. 8.
    O. Bandmann, K. H. Weiss, and S. G. Kaler, “Wilson’s disease and other neurological copper disorders,” Lancet Neurol., 14, No. 1, 103–113 (2015).CrossRefGoogle Scholar
  9. 9.
    E. B. Tapper, N. Sengupta, M. Lai, and G. Horowitz, “A decision support tool to reduce overtesting for ceruloplasmin and improve adherence with clinical guidelines,” JAMA Intern. Med., 175, No. 9, 1561–1562 (2015).CrossRefGoogle Scholar
  10. 10.
    D. Plantone, G. Primiano, R. Renna, et al., “Copper deficiency myelopathy: A report of two cases,” J. Spin. Cord Med., 38, No. 4, 559–562 (2015).CrossRefGoogle Scholar
  11. 11.
    G. L. Calder, M. H. Lee, N. Sachithanandan, et al., “Aceruloplasminaemia: a disorder of diabetes and neurodegeneration: Brief Communications,” Intern. Med. J., 47, No. 1, 115–118 (2017).CrossRefGoogle Scholar
  12. 12.
    M. Hayashida, S. Hashioka, H. Miki, et al., “Aceruloplasminemia with psychomotor excitement and neurological sign was improved by minocycline (case report),” Medicine (Baltimore), 95, No. 19, e3594 (2016).CrossRefGoogle Scholar
  13. 13.
    B. Wang and X.-P. Wang, “Does ceruloplasmin defend against neurodegenerative diseases?” Curr. Neuropharmacol., 17, No. 6, 539 –549 (2019).CrossRefGoogle Scholar
  14. 14.
    S. Montes, S. Rivera-Mancia, A. Diaz-Ruiz, et al., “Copper and copper proteins in Parkinson’s disease,” Oxid. Med. Cell. Longev., 2014, No. 2, 1–15 (2014).CrossRefGoogle Scholar
  15. 15.
    L.-H. You, F. Li, L. Wang, et al., “Brain iron accumulation exacerbates the pathogenesis of MPTPinduced Parkinson’s disease,” Neuroscience, 284, 234–246 (2015).CrossRefGoogle Scholar
  16. 16.
    S. Ayton, P. Lei, C. Mclean, et al., “Transferrin protects against Parkinsonian neurotoxicity and is deficient in Parkinson’s substantia nigra,” Sign. Transduct. Target. Ther., 1, 1–6 (2016).Google Scholar
  17. 17.
    C. W. Levenson and N. M. Tassabehji, “Iron and ageing: an introduction to iron regulatory mechanisms,” Ageing Res. Rev., 3, No. 3, 251–263 (2004).CrossRefGoogle Scholar
  18. 18.
    G. Grolez, C. Moreau, B. Sablonnière, et al., “Cerulo-plasmin activity and iron chelation treatment of patients with Parkinson’s disease,” BMC Neurol., 15, No. 1, 74 (2015).CrossRefGoogle Scholar
  19. 19.
    A. Avan and T. U. Hoogenraad, “Zinc and copper in Alzheimer’s disease,” J. Alzheimers Dis., 46, No. 1, 89–92 (2015).CrossRefGoogle Scholar
  20. 20.
    M. Schrag, C. Mueller, M. Zabel, et al., “Oxidative stress in blood in Alzheimer’s disease and mild cognitive impairment: A meta-analysis,” Neurobiol. Dis., 59, 100–110 (2013).CrossRefGoogle Scholar
  21. 21.
    L. Q. Lam, B. X. Wong, T. Frugier, et al., “Oxidation of iron under physiologically relevant conditions in biological fluids from healthy and Alzheimer’s disease subjects,” ACS Chem. Neurosci., 8, No. 4, 731–736 (2017).CrossRefGoogle Scholar
  22. 22.
    R. Squitti, M. Siotto, and R. Polimanti, “Low-copper diet as a preventive strategy for Alzheimer’s disease,” Neurobiol. Aging, 35, Suppl. 2, S40–50 (2014).CrossRefGoogle Scholar
  23. 23.
    A. Conti, S. Iannaccone, B. Sferrazza, et al., “Differential expression of ceruloplasmin isoforms in the cerebrospinal fluid of amyotrophic lateral sclerosis patients,” Proteomics Clin. Appl., 2, No. 12, 1628–1637 (2008).CrossRefGoogle Scholar
  24. 24.
    S. Eryd Adamsson, J. G. Smith, O. Melander, et al., “Inflammation-sensitive proteins and risk of atrial fibrillation: a population-based cohort study,” Eur. J. Epidemiol., 26, No. 6, 449–455 (2011).CrossRefGoogle Scholar
  25. 25.
    G. Engström, B. Hedblad, P. Tydén, and F. Lindgärde, “Inflammation-sensitive plasma proteins are associated with increased incidence of heart failure: a populationbased cohort study,” Atherosclerosis, 202, No. 2, 617–622 (2009).CrossRefGoogle Scholar
  26. 26.
    M. Hammadah, Y. Fan, Y. Wu, et al., “Prognostic value of elevated serum ceruloplasmin levels in patients with heart failure,” J. Card. Fail., 20, No. 12, 946–952 (2014).CrossRefGoogle Scholar
  27. 27.
    D. J. Kennedy, Y. Fan, Y. Wu, et al., “Plasma ceruloplasmin, a regulator of nitric oxide activity, and incident cardiovascular risk in patients with CKD,” Clin. J. Am. Soc. Nephrol., 9, No. 3, 462–467 (2014).CrossRefGoogle Scholar
  28. 28.
    G. Engström, B. Hedblad, L. Stavenow, et al., “Incidence of obesity-associated cardiovascular disease is related to inflammation-sensitive plasma proteins: a populationbased cohort study,” Arterioscler. Thromb Vasc. Biol., 24, No. 8, 1498–1502 (2004).CrossRefGoogle Scholar
  29. 29.
    G. Engström, L. Stavenow, B. Hedblad, et al., “Inflammation-sensitive plasma proteins, diabetes, and mortality and incidence of myocardial infarction and stroke: a population-based study,” Diabetes, 52, No. 2, 442–447 (2003).CrossRefGoogle Scholar
  30. 30.
    P. Lind, G. Engström, L. Stavenow, et al., “Risk of myocardial infarction and stroke in smokers is related to plasma levels of inflammation-sensitive proteins,” Arterioscler. Thromb Vasc. Biol., 24, No. 3, 577–582 (2004).CrossRefGoogle Scholar
  31. 31.
    W. H. W. Tang, Y. Wu, J. Hartiala, et al., “Clinical and genetic association of serum ceruloplasmin with cardiovascular risk,” Arterioscler. Thromb Vasc. Biol., 32, No. 2, 516–522 (2012).CrossRefGoogle Scholar
  32. 32.
    C. Altamura, R. Squitti, P. Pasqualetti, et al., “Ceruloplasmin/transferrin system is related to clinical status in acute stroke,” Stroke, 40, No. 4, 1282–1288 (2009).CrossRefGoogle Scholar
  33. 33.
    I. M. Cojocaru, M. Cojocaru, V. Sapira, and A. Ionescu, “Evaluation of oxidative stress in patients with acute ischemic stroke,” Rom. J. Intern. Med., 51, No. 2, 97–106 (2013).Google Scholar
  34. 34.
    B. D’Souza, V. D’Souza, S. Sowmya, et al., “A comparative study on oxidative stress and antioxidant status in ischemic stroke patients with and without diabetes,” Indian. J. Clin. Biochem., 23, No. 3, 218–222 (2008).CrossRefGoogle Scholar
  35. 35.
    Y. Tamam, K. Iltumur, and I. Apak, “Assessment of acute phase proteins in acute ischemic stroke,” Tohoku J. Exp. Med., 206, No. 2, 91–98 (2005).CrossRefGoogle Scholar
  36. 36.
    I.M. Cojocaru, M. Cojocaru, C. Muşuroi, et al., “Study of some markers of inflammation in atherothrombotic pathogenesis of acute ischemic stroke,” Rom. J. Intern. Med., 40, Nos.1–4, 103–116 (2002).Google Scholar
  37. 37.
    E. Oprea, M. Berteanu, D. Cintezã, and B.N. Manolescu, “The effect of the ALAnerv nutritional supplement on some oxidative stress markers in postacute stroke patients undergoing rehabilitation,” Appl. Physiol. Nutr. Metab., 38, No. 6, 613–620 (2013).CrossRefGoogle Scholar
  38. 38.
    M. Lai, D. Wang, Z. Lin, and Y. Zhang, “Small molecule copper and its relative metabolites in serum of cerebral ischemic stroke patients,” J. Stroke Cerebrovasc. Dis., 25, No. 1, 214–219 (2016).CrossRefGoogle Scholar
  39. 39.
    G. Assenza, F. Zappasodi, R. Squitti, et al., “Neuronal functionality assessed by magnetoencephalography is related to oxidative stress system in acute ischemic stroke,” NeuroImage, 44, No. 4, 1267–1273 (2009).CrossRefGoogle Scholar
  40. 40.
    Q. Tuo, P. Lei, K. A. Jackman, et al., “Tau-mediated iron export prevents ferroptotic damage after ischemic stroke,” Mol. Psychiatry, 22, No. 11, 1520–1530 (2017).CrossRefGoogle Scholar
  41. 41.
    H. Obara, Y. Tomite, and M. Doi, “Serum trace elements in tube-fed neurological dysphagia patients correlate with nutritional indices but do not correlate with trace element intakes: case of patients receiving enough trace elements intake,” Clin. Nutr., 27, No. 4, 587–593 (2008).CrossRefGoogle Scholar
  42. 42.
    M. Siotto, I. Aprile, I. Simonelli, et al., “An exploratory study of BDNF and oxidative stress marker alterations in subacute and chronic stroke patients affected by neuropathic pain,” J. Neural. Transm. (Vienna), 124, No. 12, 1557–1566 (2017).CrossRefGoogle Scholar
  43. 43.
    A. I. Konoplya, V. B. Laskov, and A. A. Shul’ginova, “Immune and oxygen disturbances in patients with chronic cerebral ischemia and their correction,” Korsakov Zh. Nevrol. Psikhiatr., 115, No. 11, 28–32 (2015).CrossRefGoogle Scholar
  44. 44.
    W. Deng, J. Cao, L. Chen, et al., “Plasma glycoproteomic study of therapeutic hypothermia reveals novel markers predicting neurologic outcome post-cardiac arrest,” Transl. Stroke Res., 9, No. 1, 64–73 (2018).CrossRefGoogle Scholar
  45. 45.
    G. Engström, P. Lind, B. Hedblad, et al., “Long-term effects of inflammation-sensitive plasma proteins and systolic blood pressure on incidence of stroke,” Stroke, 33, No. 12, 2744–2749 (2002).CrossRefGoogle Scholar
  46. 46.
    S. Ayton, M. Zhang, B.R. Roberts, et al., “Ceruloplasmin and β-amyloid precursor protein confer neuroprotection in traumatic brain injury and lower neuronal iron,” Free Radic. Biol. Med., 69, 331–337 (2014).CrossRefGoogle Scholar
  47. 47.
    K. I. Rathore, B. J. Kerr, A. Redensek, et al., “Ceruloplasmin protects injured spinal cord from ironmediated oxidative damage,” J. Neurosci., 28, No. 48, 12736–12747 (2008).CrossRefGoogle Scholar
  48. 48.
    M. Adamczyk-Sowa, P. Sowa, S. Mucha, et al., “Changes in serum ceruloplasmin levels based on immunomodulatory treatments and melatonin supplementation in multiple sclerosis patients,” Med. Sci. Monit., 22, 2484–2491 (2016).CrossRefGoogle Scholar
  49. 49.
    V. M. Provotorov, A. V. Budnevsky, and Y. I. Filatova, “Clinical manifestations of asthma during combination therapy using ceruloplasmin,” Ter. Arkh., 88, No. 3, 36–39 (2016).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Shupyk National Medical Academy of Postgraduate EducationKyivUkraine

Personalised recommendations