Advertisement

Effects of a Gut Microbiome Toxin, p-Cresol, on the Indices of Social Behavior in Rats

  • G. Tevzadze
  • N. Oniani
  • E. Zhuravliova
  • N. Darchia
  • M. Eliozishvili
  • M. Gogichadze
  • N. Lortkipanidze
  • T. OnianiJr
  • A. Kakabadze
  • Z. Kakabadze
  • L. Karalashvili
  • Z. Kikvidze
  • D. MikeladzeEmail author
Article

At present, several studies have highlighted the relation between changes in the gut microbiota/microbiome and a few pathologies of the CNS, including autism and other disorders of social behavior. We have checked out a hypothesis that gut microbiome-produced neurotoxins might participate in the development of these disorders. As was found, intraperitoneal injections of a gut toxin, p-cresol, induced changes in social behavior of rats, which could be interpreted as autism-like ones. Intranasal administration of oxytocin rescued the behavioral impairments in p-cresol-treated rats in the three-chambered social approach test and neutralized the respective modifications of locomotor activity, research activity, and emotion-related indices in the open-field test. The effects of oxytocin were eliminated by administration of an opioid antagonist, naltrexone. These data suggest that there are functional interactions between the oxytocinergic and opioidergic systems in p-cresol-induced changes of social behavior under condtions of the animal model used.

Keywords

gut microbiota p-cresol social behavior autism-like disorders 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Chow, S. M. Lee, Y. Shen, et al., “Host-bacterial symbiosis in health and disease,” Adv. Immunol., 107, 243–274 (2010)CrossRefGoogle Scholar
  2. 2.
    J. C. Clemente, L. K. Ursell, L. W. Parfrey, and R Knight, “The impact of the gut microbiota on human health: an integrative view,” Cell, 148, No. 2, 1258–1270 (2012).CrossRefGoogle Scholar
  3. 3.
    Y. E. Borre, G. W. O’Keeffe, G. Clarke, et al., “Microbiota and neurodevelopmental windows: implications for brain disorders,” Trends Mol. Med., 20, No. 9, 509–518 (2014).Google Scholar
  4. 4.
    M. De Angelis, M. Piccolo, L. Vannini, et al., “Fecal microbiota and metabolome of children with autism and pervasive developmental disorder not otherwise specified,” PLoS One, 8, No. 10, e76993 (2013).CrossRefGoogle Scholar
  5. 5.
    R. Keşli, C. Gökçen, U. Buluğ, and Y. Terzi, “Investigation of the relation between anaerobic bacteria genus Clostridium and late-onset autism etiology in children,” J. Immunoassay Immunochem., 35, No. 1, 101–109 (2014).CrossRefGoogle Scholar
  6. 6.
    J. K. Nicholson, E. Holmes, J. Kinross, et al., “Hostgut microbiota metabolic interactions,” Science, 336, No. 6086, 1262–1267 (2012).CrossRefGoogle Scholar
  7. 7.
    G. Tevzadze, L. Shanshiashvili, and D. Mikeladze, “Children with epilepsy and autistic spectrum disorders show similarly high levels of urinary p-cresol,” JBPC, 17, 77–80 (2017).CrossRefGoogle Scholar
  8. 8.
    A. M. Persico and V. Napolioni, “Urinary p-cresol in autism spectrum disorder,” Neurotoxicol. Teratol., 36, 82–90 (2013).CrossRefGoogle Scholar
  9. 9.
    E. Y. Hsiao, S. W. McBride, S Hsien, et al., “Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders,” Cell, 155, No. 7, 1451–1463 (2013).CrossRefGoogle Scholar
  10. 10.
    V. Trezza, R. Damsteegt, E. J. Achterberg, and L. J. Vanderschuren, “Nucleus accumbens μ-opioid receptors mediate social reward,” J. Neurosci., 31, No. 17, 6362–6370 (2011).CrossRefGoogle Scholar
  11. 11.
    R. A. Depue and J. V. Morrone-Strupinsky, “A neurobehavioral model of affiliative bonding: Implications for conceptualizing a human trait of affiliation,” Behav. Brain Sci., 28, No. 3, 313–395 (2005).Google Scholar
  12. 12.
    S. N. Haber and B. Knutson, “The reward circuit: linking primate anatomy and human imaging,” Neuropsychopharmacology, 35, No. 1, 4–26 (2010).CrossRefGoogle Scholar
  13. 13.
    M. Tops, S. L. Koole, H. IJzerman, and F. T. Buisman-Pijlman, “Why social attachment and oxytocin protect against addiction and stress: insights from the dynamics between ventral and dorsal corticostriatal systems,” Pharmacol. Biochem. Behav., 119, 39–48 (2014).CrossRefGoogle Scholar
  14. 14.
    D. Oddi, W. E. Crusio, F. R. D’Amato, and S. Pietropaolo, “Monogenic mouse models of social dysfunction: implications for autism,” Behav. Brain Res., 251, 75–84 (2013).CrossRefGoogle Scholar
  15. 15.
    J. A. Becker, D. Clesse, C. Spiegelhalter, et al., “Autisticlike syndrome in mu opioid receptor null mice is relieved by facilitated mGluR4 activity,” Neuropsychopharmacology, 39, No. 9, 2049–2060 (2014).CrossRefGoogle Scholar
  16. 16.
    H. J. Lee, A. H. Macbeth, J. H. Pagani, and W. S. Young 3rd, “Oxytocin: the great facilitator of life,” Prog. Neurobiol., 88, No. 2, 127–151 (2009).Google Scholar
  17. 17.
    V. Gigliucci, M. Leonzino, M. Busnelli, et al., “Region specific up-regulation of oxytocin receptors in the opioid oprm1 (-/-) mouse model of autism,” Front. Pediatr., 2, 1–12 (2014).CrossRefGoogle Scholar
  18. 18.
    I. D. Neumann, R. Maloumby, D. I. Beiderbeck, et al., “Increased brain and plasma oxytocin after nasal and peripheral administration in rats and mice,” Psychoneuroendocrinology, 38, No. 10, 1985–1993 (2013).CrossRefGoogle Scholar
  19. 19.
    J. N. Crawley, “Designing mouse behavioral tasks relevant to autistic-like behaviors,” Ment. Retard. Dev. Disabil. Res. Rev., 10, No. 4, 248–258 (2004).CrossRefGoogle Scholar
  20. 20.
    J. J. Nadler, S. S. Moy, G. Dold, et al., “Automated apparatus for quantitation of social approach behaviors in mice,” Genes Brain Behav., 3, No. 5, 303–314 (2004).CrossRefGoogle Scholar
  21. 21.
    H. M. Parracho, M. O. Bingham, G. R. Gibson, and A. L. McCartney, “Differences between the gut microflora of children with autistic spectrum disorders and that of healthy children,” J. Med. Microbiol., 54, Pt. 10, 987–991 (2005).CrossRefGoogle Scholar
  22. 22.
    A. Markov, The Birth of Complexity. Evolutional Biology Today: Unexpected Findings and New Questions. Moscow, AST: CORPUS (2016).Google Scholar
  23. 23.
    M. Bostanciklioğlu, “Intestinal bacterial flora and Alzheimer’s disease,” Neurophysiology, 50, No. 2, 140–148 (2018).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • G. Tevzadze
    • 1
  • N. Oniani
    • 3
  • E. Zhuravliova
    • 2
    • 4
  • N. Darchia
    • 3
  • M. Eliozishvili
    • 3
  • M. Gogichadze
    • 3
  • N. Lortkipanidze
    • 3
  • T. OnianiJr
    • 3
  • A. Kakabadze
    • 5
  • Z. Kakabadze
    • 5
  • L. Karalashvili
    • 5
  • Z. Kikvidze
    • 6
  • D. Mikeladze
    • 2
    • 4
    Email author
  1. 1.4-D Research InstituteIlia State UniversityTbilisiGeorgia
  2. 2.Institute of Chemical BiologyIlia State UniversityTbilisiGeorgia
  3. 3.T. Oniani Laboratory for Sleep ResearchIlia State UniversityTbilisiGeorgia
  4. 4.I. Beritashvili Center of Experimental BiomedicineTbilisiGeorgia
  5. 5.Department of Clinical AnatomyTbilisi State Medical UniversityTbilisiGeorgia
  6. 6.Institute of Ethnobiology and SocioecologyIlia State UniversityTbilisiGeorgia

Personalised recommendations