, Volume 50, Issue 3, pp 166–172 | Cite as

Effects of Vitamin E on the Synthesis of Phospholipids and Brain Functions in Old Rats

  • L. K. M. HassounehEmail author

We examined the effects of supplementation of old rats with vitamin E (alpha-tocopherol, αTPh, acetate) on phospholopid (PL) metabolism in the brain and cognitive functions of these animals. Intragastric administration of αTPh to 24-month-old rats for 14 days resulted in a noticeable increase in the level of newly synthesized phosphatidylserine (PS) in the hippocampus of experimental animals, as compared with control rats. At the same time, there was a decrease in the [14C] phosphatidylcholine (PC) content in the hippocampus of experimental rats vs. controls. Changes in the PL levels observed in the hippocampus of experimental animals due to αTPh administration were associated with an increased number of active avoidances and a decreased latent period of these events within acquisition of the respective conditioned reflex in a shuttle box. The data obtained provide evidence that αTPh is a potent modulator of PL metabolism in the hippocampus and functions of the latter at old age.


aging hippocampus vitamin E phosphatidylcholine (PC) phosphatidylserine (PS) cognitive functions 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Mozzi, S. Buratta, and G. Goracci, “Metabolism and functions of phosphatidylserine in mammalian brain,” Neurochem. Res., 28, No. 2, 195-214 (2003).CrossRefGoogle Scholar
  2. 2.
    F. Casamenti, C. Scali, and G. Pepeu, Phosphatidylserine reverses the age-dependent decrease in cortical acetylcholine release: a microdialysis study, Eur. J. Pharmacol., 194, No. 1, 194-211 (1991).CrossRefGoogle Scholar
  3. 3.
    M. A. McDaniel, S. F. Maier, and G. O. Einstein, “‘Brain-specific’ nutrients: a memory cure? Nutrition, 19, Nos. 11–12, 957-975 (2003).CrossRefGoogle Scholar
  4. 4.
    M. L. Bader-Lange, G. Cenini, M. Piroddi, et al., “Loss of phospholipid asymmetry and elevated brain apoptotic protein levels in subjects with amnestic mild cognitive impairment and Alzheimer disease,” Neurobiol. Dis., 29, No. 3, 456-464 (2008).CrossRefGoogle Scholar
  5. 5.
    N. A. Babenko and Ya. A. Semenova, “Effects of long-term fish oil-enriched diet on the sphingolipid metabolism in brain of old rats,” Exp. Gerontol., 45, No. 5, 375-380 (2010).CrossRefGoogle Scholar
  6. 6.
    M. G. Nunzi, F. Milan, D. Guidolin, and G. Toffano, “Dendritic spine loss in hippocampus of aged rats. Effect of brain phosphatidylserine administration,” Neurobiol. Aging, 8, No. 6, 501-510 (1987).CrossRefGoogle Scholar
  7. 7.
    N. A. Babenko and Ya. A. Semenova, “Effects of exogenous phosphatidylserine on cognitive functions and phospholipid metabolism in the hippocampus of aged rats,” Neurosci. Behav. Physiol., 41, No. 1, 97-101 (2011).CrossRefGoogle Scholar
  8. 8.
    M. Akbar, F. Calderon, Z. Wen, and H.-Y. Kim, “Docosahexaenoic acid: a positive modulator of Akt signaling in neuronal survival,” Proc. Natl. Acad. Sci. USA, 102, 10858-10863 (2005).CrossRefGoogle Scholar
  9. 9.
    V. Chandra, J. Jasti, P. Kaur, et al., “First structural evidence of a specific inhibition of phospholipase A2 by alpha-tocopherol (vitamin E) and its implications in inflammation: crystal structure of the complex formed between phospholipase A2 and alpha-tocopherol at 1.8 A resolution,” J. Mol. Biol., 320, No. 2, 215-222 (2002).CrossRefGoogle Scholar
  10. 10.
    T. Abe, X. Lu, Y. Jiang, et al., “Site-directed mutagenesis of the active site of diacylglycerol kinase alpha: calcium and phosphatidylserine stimulate enzyme activity via distinct mechanisms,” Biochem. J., 375, Pt. 3, 673-680 (2003).CrossRefGoogle Scholar
  11. 11.
    N. A. Babenko, L. Kh. Hassouneh, V. S. Kharchenko, and V. V. Garkavenko, “Vitamin E prevents the agedependent and palmitate-induced disturbances of sphingolipid turnover in liver cells,” Age (Dordr.), 34, No. 4, 905-915 (2012).CrossRefGoogle Scholar
  12. 12.
    N. A. Babenko and E. G. Shakhova, “Long-term food restriction prevents aging-associated sphingolipid turnover dysregulation in the brain,” Arch. Gerontol. Geriatr., 58, No. 3, 420-426 (2014).CrossRefGoogle Scholar
  13. 13.
    S. Grether-Beck, A. Timmer, I. Felsner, et al., “Ultraviolet A-induced signaling involves a ceramidemediated autocrine loop leading to ceramide de novo synthesis,” J. Invest. Dermatol., 125, No. 3, 545-553 (2005).CrossRefGoogle Scholar
  14. 14.
    C. Mazière, M. A. Conte, L. Leborgne, et al., “UVA radiation stimulates ceramide production: relationship to oxidative stress and potential role in ERK, JNK, and p38 activation,” Biochem. Biophys. Res. Commun., 281, No. 2, 289-294 (2001).CrossRefGoogle Scholar
  15. 15.
    K. Ayasolla, M. Khan, A. K. Singh, and I. Singh, “Inflammatory mediator and beta-amyloid (25-35)-induced ceramide generation and iNOS expression are inhibited by vitamin E,” Free Radical Biol. Med., 37, No. 3, 325-338 (2004).CrossRefGoogle Scholar
  16. 16.
    K. Yamagata, S. Ichinose, C. Tagawa, and M. Tagami, “Vitamin E regulates SMase activity, GSH levels, and inhibits neuronal death in stroke-prone spontaneously hypertensive rats during hypoxia and reoxygenation,” J. Exp. Stroke Transl. Med., 2, No. 2, 41-48 (2009).CrossRefGoogle Scholar
  17. 17.
    S. G. Meyer and H. de Groot, “[14C]serine from phosphatidylserine labels ceramide and sphingomyelin in L929 cells: evidence for a new metabolic relationship between glycerophospholipids and sphingolipids,” Arch. Biochem. Biophys., 410, No. 1, 107-111 (2003).CrossRefGoogle Scholar
  18. 18.
    G. Pepeu, I. M. Pepeu, and L. Amaducci, “A review of phosphatidylserine pharmacological and clinical effects. Is phosphatidylserine a drug for the ageing brain,” Pharmacol. Res., 33, No. 2, 73-80 (1996).CrossRefGoogle Scholar
  19. 19.
    E. G. Bligh and W. J. Dyer, “A rapid method of total lipid extraction and purification,” Can. J. Biochem. Physiol., 37, No. 8, 911-917 (1959).CrossRefGoogle Scholar
  20. 20.
    G. R. Bartlett, “Phosphorus assay in column chromatography,” J. Biol. Chem., 234, No. 3, 466-468 (1959).PubMedGoogle Scholar
  21. 21.
    J. E. Vance, “Phosphatidylserine and phosphatidylethanolamine in mammalian cells: two metabolicallyrelated aminophospholipids,” J. Lipid Res., 49, No. 7, 1377-1387 (2008).CrossRefGoogle Scholar
  22. 22.
    M. Wong and J. K. Lodge, “A metabolomic investigation of the effects of vitamin E supplementation in humans,” Nutr. Metab. (Lond.), 9, No. 1, 110 (2012).CrossRefGoogle Scholar
  23. 23.
    J. P. Woronczak, H. Poddana, E. Siucińska, et al., “Metabolic conversion of phosphatidylserine via phosphatidylethanolamine into phosphatidylcholine in rat brain,” Biochem. Mol. Biol. Int., 30, No. 6, 1153-1160 (1993).PubMedGoogle Scholar
  24. 24.
    G. A. Salvador, F. M. López, and N. M. Giusto, “Agerelated changes in central nervous system phosphatidylserine decarboxylase activity,” J. Neurosci. Res., 70, No. 3, 283-289 (2002).CrossRefGoogle Scholar
  25. 25.
    V. B. Junqueira, B. M. Barros, S. S. Chan, et al., “Aging and oxidative stress,” Mol. Aspects Med., 25, Nos. 1–2, 5-16 (2004).CrossRefGoogle Scholar
  26. 26.
    I. Rodrigues Siqueira, C. Fochesatto, I. L. da Silva Torres, et al., “Aging affects oxidative state in hippocampus, hypothalamus and adrenal glands of Wistar rats,” Life Sci., 78, No. 3, 271-278 (2005.CrossRefGoogle Scholar
  27. 27.
    A. Navarro, M. J. Bandez, J. M. Lopez-Cepero, et al., “High doses of vitamin E improve mitochondrial dysfunction in rat hippocampus and frontal cortex upon aging,” Am. J. Physiol. Regul. Integr. Comp. Physiol., 300, No. 4, R827-R834 (2011).CrossRefGoogle Scholar
  28. 28.
    B. F. Serinkan, Y. Y. Tyurina, H. Babu, et al., “Vitamin E inhibits anti-Fas-induced phosphatidylserine oxidation but does not affect its externalization during apoptosis in Jurkat T cells and their phagocytosis by J774A.1 macrophages,” Antioxid. Redox Signal., 6, No. 2, 227-236 (2004).CrossRefGoogle Scholar
  29. 29.
    K. H. Choy, O. Dean, M. Berk, et al., “Effects of N-acetyl-cysteine treatment on glutathione depletion and short-term spatial memory deficit in 2-cyclohexen- 1-one-treated rats,” Eur. J. Pharmacol., 649, Nos. 1–3, 224-228 (2010).CrossRefGoogle Scholar
  30. 30.
    J. M. Robillard, G. R. Gordon, H. B. Choi, et al., “Glutathione restores the mechanism of synaptic plasticity in aged mice to that of the adult,” PLoS One, 6, No. 5, e20676 (2011).CrossRefGoogle Scholar
  31. 31.
    A. L. Fu, Z. H. Dong, and M. J. Sun, “Protective effect of N-acetyl-L-cysteine of amyloid β-peptide-induced learning and memory deficits in mice,” Brain Res., 1109, No. 1, 201-206 (2006).CrossRefGoogle Scholar
  32. 32.
    J. A. Araujo, G. M. Landsberg, N. W. Milgram, and A. Miolo, “Improvement of short-term memory performance in aged beagles by a nutraceutical supplement containing phosphatidylserine, Ginkgo biloba, vitamin E, and pyridoxine,” Can. Vet. J., 49, No. 4, 379-385 (2008).PubMedPubMedCentralGoogle Scholar
  33. 33.
    L. Puglielli, R. E. Tanzi, and D. M. Kovacs, “Alzheimer’s disease: the cholesterol connection,” Nat. Neurosci., 6, No. 4, 345-351 (2003).CrossRefGoogle Scholar
  34. 34.
    R. G. Cutler, J. Kelly, K. Storie, et al., “Involvement of oxidative stress-induced abnormalities in ceramide and cholesterol metabolism in brain aging and Alzheimer’s disease,” Proc. Natl. Acad. Sci. USA, 101, No. 7, 2070-2075 (2004).CrossRefGoogle Scholar
  35. 35.
    C. Costantini, R. Weindruch, G. Della Valle, and L. Puglielli, “A TrkA-to-p75NTR molecular switch activates amyloid β-peptide generation during aging,” Biochem. J., 391, Pt. 1, 59-67 (2005).CrossRefGoogle Scholar
  36. 36.
    L. Puglielli, B. C. Ellis, A. J. Saunders, and D. M. Kovacs, “Ceramide stabilizes beta-site amyloid precursor protein-cleaving enzyme 1 and promotes amyloid beta-peptide biogenesis,” J. Biol. Chem., 278, No. 22, 19777-19783 (2003).CrossRefGoogle Scholar
  37. 37.
    N. A. Crivello, I. H. Rosenberg, G. E. Dallal, et al., “Age-related changes in neutral sphingomyelin-specific phospholipase C activity in striatum, hippocampus, and frontal cortex: implication for sensitivity to stress and inflammation,” Neurochem. Int., 47, No. 8, 573-579 (2005).CrossRefGoogle Scholar
  38. 38.
    V. Mansat, G. Laurent, T. Levade, et al., “The protein kinase C activators phorbol esters and phosphatidylserine inhibit neutral sphingomyelinase activation, ceramide generation, and apoptosis triggered by daunorubicin,” Cancer Res., 57, No. 23, 5300-5304 (2005).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Faculty of PharmacyAl-Isra UniversityAmmanJordan
  2. 2.Institute of Biology, Karazin Kharkiv National UniversityKharkivUkraine

Personalised recommendations