Neurophysiology

, Volume 49, Issue 6, pp 424–431 | Cite as

Functional State of the Mitochondria from Tissues of the Rat Brain after Chronic Occlusion of the Common Carotid Artery: Role of Lysyl Oxidase

  • O. Yu. Harmatina
  • V. I. Nosar’
  • E. É. Kolesnikova
  • T. Yu. Lapikova-Bryginskaya
  • L. V. Bratus’
  • A. G. Portnychenko
Article
  • 4 Downloads

Stenosis and occlusion of the common carotid artery (CCA) are one of the main reasons of cerebrovascular pathologies; these factors determine the development of hypoperfusion of the brain. Disorders in the expression of lysyl oxidase (LOX) underlie the development of a number of pathological processes, including vascular and cerebral pathologies. Changes in the activity of this enzyme are assumed to significantly affect the functional state of the mitochondria (MCh). We examined the role of LOX in the regulation of energy metabolism in the rat brain under conditions of experimental unilateral chronic occlusion of the CCA (CCA ChO). Experiments were carried out on Wistar rats with ligated left CCA. Animals of one of the experimental groups received drinking water with 0.2% of a LOX blocker, β-aminopropionitrile (BAPN) during 8 weeks. After such course of BAPN introduction, we estimated the characteristics of energy metabolism in the MCh from tissues of the brain hemispheres using a polarographic technique. Occlusion of the CCA was accompanied by disorders in tissue respiration (oxidative phosphorylation in the MCh); these changes were more expressed in the left hemisphere (P < 0.05), but those in the right one were also quite noticeable. There were indications for the existence of interhemisphere differences in the functioning of the MCh complex 1 in healthy control animals; the respective values were greater in the left hemisphere. Introduction of BAPN promoted partial recovery of the MCh functions; this was manifested in some weakening of the effects of CCA occlusion. Thus, under conditions of unilateral CCA ChO, energy metabolism in both brain hemispheres undergoes negative changes. Changes in the LOX activity are one of the factors responsible for negative shifts in the indices of MCh functioning related to hypoperfusion of brain tissues.

Keywords

lysyl oxidase (LOX) BAPN (a LOX blocker) brain hypoperfusion mitochondria (MCh) energy metabolism polarography 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. J. Powers, G. A. Press, R. L. Grubb Jr., et al., “The effect of hemodynamically significant carotid artery disease on the hemodynamic status of the cerebral circulation,” Ann. Int. Med., 106, 27–34 (1987).CrossRefPubMedGoogle Scholar
  2. 2.
    A. A. Boldyrev, “Role of active oxygen species in the vital activity of a neuron,” Usp. Fiziol. Nauk, 34, No. 3, 21–34 (2003).PubMedGoogle Scholar
  3. 3.
    Ye. I. Gusev and V. I. Skvortsov, Ischemia of the Brain, Meditsina, Moscow (2001).Google Scholar
  4. 4.
    A. P. Kudin, T. A. Kudina, J. Seyfried, et al., “Seizuredependent modulation of mitochondrial oxidative phosphorylation in rat hippocampus,” Eur. J. Neurosci., 15, No. 7, 1105–1114 (2002).CrossRefPubMedGoogle Scholar
  5. 5.
    T. Ohtsuki, M. Matsumoto, K. Suzuki, et al., “Mitochondrial lipid peroxidation and superoxide dismutase in rat hypertensive target organs,” Am. J. Physiol., 268, H1418–H1421 (1995).CrossRefPubMedGoogle Scholar
  6. 6.
    W. S. Kunz, I. V. Goussakov, H. Beck, et al., “Altered mitochondrial oxidative phosphorylation in hippocampal slices of kainate-treated rats,” Brain Res., 826, No. 2, 236–242 (1999).CrossRefPubMedGoogle Scholar
  7. 7.
    D. Yates, “Cell biology of the neuron: fuelling transport,” Nat. Rev. Neurosci., 14, No. 3, 156 (2013).PubMedGoogle Scholar
  8. 8.
    O. Kann, “The interneuron energy hypothesis: Implications for brain disease,” Neurobiol. Dis., 90, 75–85 (2016).CrossRefPubMedGoogle Scholar
  9. 9.
    K. Csiszar, “Lysyl oxidases: a novel multifunctional amine oxidase family,” Prog. Nucleic Acid Res. Mol. Biol., 70, 1–32 (2001).CrossRefPubMedGoogle Scholar
  10. 10.
    L. I. Smith-Mungo and H. M. Kagan, “Lysyl oxidase: properties, regulation and multiple functions in biology,” Matrix Biol., 16, No. 7, 387–398 (1998).CrossRefPubMedGoogle Scholar
  11. 11.
    J. T. Erler, K. L. Bennewith, M. Nicolau, et al., “Lysyl oxidase is essential for hypoxia-induced metastasis,” Nature, 440, 1222–1226 (2006).CrossRefPubMedGoogle Scholar
  12. 12.
    R. Schietke, C. Warnecke, I. Wacker, et al., “The lysyl oxidases LOX and LOXL2 are necessary and sufficient to repress E-cadherin in hypoxia: insights into cellular transformation processes mediated by HIF-1,” J. Biol. Chem., 285, No. 9, 6658–6669 (2010).CrossRefPubMedGoogle Scholar
  13. 13.
    R. da Silva, M. Uno, S. K. Marie, and S. M. Oba-Shinjo, “LOX expression and functional analysis in astrocytomas and impact of IDH1 mutation,” PLoS One, 10, No. 3, e0119781 (2015).CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    C. Rodriguez, J. Martmez-Gonzalez, B. Raposo, et al., “Regulation of lysyl oxidase in vascular cells: lysyl oxidase as a new player in cardiovascular diseases,” Cardiovasc. Res., 79, No. 1, 7–13 (2008).CrossRefPubMedGoogle Scholar
  15. 15.
    H. Akagawa, A. Narita, H. Yamada, et al., “Systematic screening of lysyl oxidase-like (LOXL) family genes demonstrates that LOXL2 is a susceptibility gene to intracranial aneurysms,” Human Genet., 121, Nos. 3/4, 377–387 (2007).CrossRefGoogle Scholar
  16. 16.
    M. Majora, T. Wittkampf, B. Schuermann, et al., “Functional consequences of mitochondrial DNA deletions in human skin fibroblasts: increased contractile strength in collagen lattices is due to oxidative stressinduced lysyl oxidase activity,” Am. J. Pathol., 175, No. 3, 1019–1029 (2009).CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    A. M. Baker, D. Bird, J. C. Welti, et al., “Lysyl oxidase plays a critical role in endothelial cell stimulation to drive tumor angiogenesis,” Cancer Res., 73, No. 2, 583–594 (2013).CrossRefPubMedGoogle Scholar
  18. 18.
    A. L. Ton’shin, N. V. Lobysheva, L. C. Yaguzhinskii, et al., “Effect of the inhibitory neuromediator glycine on slow destructive processes in slices of the cerebral cortex at anoxia,” Biokhimiya, 72, No. 5, 631–641 (2007).Google Scholar
  19. 19.
    B. Chance and G. Williams, “The respiratory chain and oxidative phosphorylation,” Adv. Enzymol., 17, 65–134 (1956).Google Scholar
  20. 20.
    R. W. Estabrook, “Mitochondrial respiratory control and the polarographic measurement of ADP:O ratio,” Methods Enzymol., 10, 41–47 (1967).CrossRefGoogle Scholar
  21. 21.
    Manual for Studies of Biological Oxidation using a Polarographic Technique, V. G. Frank, ed., Nauka, Moscow (1971).Google Scholar
  22. 22.
    L. D. Lyk’yanova, “Bioenergetic hypoxia: Meaning, mechanisms, and ways of correction,” Byul. Eksp. Biol. Med., 124, No. 9, 244–254 (1997).Google Scholar
  23. 23.
    H. Tsukada, “The use of 18F-BCPP-EF as a PET probe for complex I activity in the brain,” Methods Enzymol., 547, 417–431 (2014).CrossRefPubMedGoogle Scholar
  24. 24.
    E. T. Chouchani, V. R. Pell, E. Gaude, et al., “Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS,” Nature, 515, No. 7527, 431–435 (2014).CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    D. N. Doll, H. Hu, J. Sun, et al., “Mitochondrial crisis in cerebrovascular endothelial cells opens the blood-brain barrier,” Stroke, 46, No. 6, 1681–1689 (2015).CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    A. C. Schinzel, O. Takeuchi, Z. Huang, et al., “Cyclophilin D is a component of mitochondrial permeability transition and mediates neuronal cell death after focal cerebral ischemia,” Proc. Natl. Acad. Sci. USA, 102, No. 34, 12005–12010 (2005).CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    J. C. de la Torre, “Are major dementias triggered by poor blood flow to the brain? Theoretical considerations,” J. Alzheimers Dis., 57, No. 2, 353–371 (2017).CrossRefPubMedGoogle Scholar
  28. 28.
    K. R. Dave, I. Saul, R. Busto, et al., “Ischemic preconditioning preserves mitochondrial function after global cerebral ischemia in rat hippocampus,” J. Cerebr. Blood Flow Metab., 21, No. 12, 1401–1410 (2001).CrossRefGoogle Scholar
  29. 29.
    J. Pahnke, C. Fröhlich, M. Krohn, et al., “Impaired mitochondrial energy production and ABC transporter function – A crucial interconnection in dementing proteopathies of the brain,” Mech. Ageing Dev., 134, No. 10, 506–515 (2013).CrossRefPubMedGoogle Scholar
  30. 30.
    M. Liesa and W. Qiu, “Shirihai mitochondrial ABC transporters function: the role of ABCB10 (ABC-me) as a novel player in cellular handling of reactive oxygen species,” Biochim. Biophys. Acta, 1823, No. 10, 1945-1957 (2012).CrossRefPubMedGoogle Scholar
  31. 31.
    M. Krohn, C. Lange, J. Hofrichter, et al., “Cerebral amyloid-P proteostasis is regulated by the membrane transport protein ABCC1 in mice,” J. Clin. Invest., 121, No. 10, 3924–3931 (2011).CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    D. M. van Assema, M. Lubberink, P. Rizzu, et al., “Blood- brain barrier P-glycoprotein function in healthy subjects and Alzheimer’s disease patients: effect of polymorphisms in the ABCB1 gene,” EJNMMI Res., 2, No. 1, 57 (2012).CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    A. L. Bartels, A. T. Willemsen, R. Kortekaas, et al., “Decreased blood-brain barrier P-glycoprotein function in the progression of Parkinson’s disease, PSP and MSA,” J. Neural Transm., 115, No. 7, 1001–1009 (2008).CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Y. Liao, Y. Dong, and J. Cheng, “The function of the mitochondrial calcium uniporter in neurodegenerative disorders,” Int. J. Mol. Sci., 18, No. 2, 248–252 (2017).CrossRefPubMedCentralGoogle Scholar
  35. 35.
    S. S. Bombicino, D. E. Iglesias, T. Zaobornyj, et al., “Mitochondrial nitric oxide production supported by reverse electron transfer,” Arch. Biochem. Biophys., 607, 8–19 (2016).CrossRefPubMedGoogle Scholar
  36. 36.
    M. S. Parihar, A. Parihar, F. A. Villamena, et al., “Inactivation of mitochondrial respiratory chain complex I leads mitochondrial nitric oxide synthase to become pro-oxidative,” Biochem. Biophys. Res. Commun., 367, No. 4, 761–767 (2008).CrossRefPubMedGoogle Scholar
  37. 37.
    M. S. Parihar, R. R. Nazarewicz, E. Kincaid, et al., “Association of mitochondrial nitric oxide synthase activity with respiratory chain complex I,” Biochem. Biophys. Res. Commun., 366, No. 1, 23–28 (2008).CrossRefPubMedGoogle Scholar
  38. 38.
    G. M. Gilad, H. M. Kagan, and V. H. Gilad, “Evidence for increased lysyl oxidase, the extracellular matrix-forming enzyme, in Alzheimer’s disease brain,” Neurosci. Lett., 376, No. 3, 210–214 (2005).CrossRefPubMedGoogle Scholar
  39. 39.
    P. A. Li, Q. He, T. Cao, et al., “Up-regulation and altered distribution of lysyl oxidase in the central nervous system of mutant SOD1 transgenic mouse model of amyotrophic lateral sclerosis,” Mol. Brain Res., 120, No. 2, 115–122 (2004).CrossRefPubMedGoogle Scholar
  40. 40.
    G. M. Gilad, H. M. Kagan, and V. H. Gilad, “Lysyl oxidase, the extracellular matrix-forming enzyme, in rat brain injury sites,” Neurosci. Lett., 310, No. 1, 45–48 (2001).CrossRefPubMedGoogle Scholar
  41. 41.
    G. M. Gilad and V. H. Gilad, “Beta-aminopropionitrile treatment can accelerate recovery of mice after spinal cord injury,” Eur J. Pharmacol., 430, No. 1, 69-72 (2001).CrossRefPubMedGoogle Scholar
  42. 42.
    S. Martinez-Revelles, A. B. Garcia-Redondo, M. S. Avendano, et al., “Lysyl oxidase induces vascular oxidative stress and contributes to arterial stiffness and abnormal elastin structure in hypertension: role of p38MAPK,” Antioxid Redox Signal, 27, No. 7, 379–397 (2017).CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    A. Guadall, M. Orriols, J. F. Alcudia, et al., “Hypoxiainduced ROS signaling is required for LOX up-regulation in endothelial cells,” Front. Biosci. (Elite Ed.), 1, No. 3, 955–967 (2011).Google Scholar
  44. 44.
    M. Orriols, A. Guadall, M. Galân, et al., “Lysyl oxidase (LOX) in vascular remodelling. Insight from a new animal model,” Thromb. Haemost., 112, No. 4, 812–824 (2014).PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • O. Yu. Harmatina
    • 1
  • V. I. Nosar’
    • 1
  • E. É. Kolesnikova
    • 1
  • T. Yu. Lapikova-Bryginskaya
    • 1
  • L. V. Bratus’
    • 1
  • A. G. Portnychenko
    • 1
  1. 1.Bogomolets Intsitute of Physiology of the NAS of UkraineKyivUkraine

Personalised recommendations