Absent in melanoma 2 regulates tumor cell proliferation in glioblastoma multiforme

  • P. A. Chen
  • G. Shrivastava
  • E. F. Balcom
  • B. A. McKenzie
  • J. Fernandes
  • W. G. Branton
  • B. M. Wheatley
  • K. Petruk
  • F. K. H. van Landeghem
  • Christopher PowerEmail author
Laboratory Investigation



Inflammation is a key aspect of glioblastoma multiforme (GBM) although it remains unclear how it contributes to GBM pathogenesis. Inflammasomes are intracellular multi-protein complexes that are involved in innate immunity and are activated by cellular stress, principally in macrophages. This study examined the expression of inflammasome-associated genes in GBM, particularly absent in melanoma 2 (AIM2).


Tissue samples from surgically-resected GBM tumors (n = 10) were compared to resected brain specimens from patients with epilepsy (age- and sex-matched Other Disease Controls (ODC, n=5)) by qRT-PCR, western blotting and immunofluorescence. Gene expression studies in human astrocytoma U251 cells were performed and the effects of deleting the absent in melanoma 2 (AIM2) gene using the CRISPR-Cas9 system were analyzed.


GBM tissues showed significantly elevated expression of multiple immune (CD3E, CD163, CD68, MX1, ARG1) and inflammasome (AIM2, NLRP1, IL18, CASP1, and IL-33) genes compared to ODC tissues, without induction of IL1B, IFNG or TNFA. An insert-containing AIM2 variant transcript was highly expressed in GBM tissues and in U251 cells. AIM2 immunoreactivity was concentrated in the tumor core in the absence of PCNA immunodetection and showed a predominant 52 kDa immunoreactive band on western blot. Deletion of AIM2 resulted in significantly enhanced proliferation of U251 cells, which also displayed increased resistance to temozolomide treatment.


GBM tumors express a distinct profile of inflammasome-associated genes in a tumor-specific manner. AIM2 expression in tumor cells suppressed cell proliferation while also conferring increased susceptibility to contemporary GBM therapy.


Glioblastoma Inflammasome AIM2 Transcript insertion Temozolomide 



EFB received a Victor Osten Summer Studentship from the Alberta Cancer Foundation (ACF). CP holds a Canada Research Chair in Neurological infection and Immunity. These studies were supported by the University Hospital Foundation (KP, CP).

Author contributions

PAC, GS, WGB, EFB and CP designed and executed the experiments as well as writing the manuscript. BAM and JF provided expert technical assistance and commentary on the manuscript. BMW, KP and FKHVL provided clinical care and advice on the manuscript. PAC, GS, EFB, WGB, BMW, KP, FKHVL and CP approved the final manuscript.

Compliance with ethical standard

Ethical approval

The collection and use of brain tissues from all patients was approved (Pro0002291) by the University of Alberta Human Research Ethics Board (Biomedical) and written informed consent was received for all samples. This article does not contain any studies with animals performed by any of the authors.

Supplementary material

11060_2019_3230_MOESM1_ESM.pptx (1.2 mb)
Supplementary file1 (PPTX 1271 kb)
11060_2019_3230_MOESM2_ESM.docx (23 kb)
Supplementary file2 (DOCX 23 kb)


  1. 1.
    Alifieris C, Trafalis DT (2015) Glioblastoma multiforme: pathogenesis and treatment. Pharmacol Ther 152:63–82CrossRefGoogle Scholar
  2. 2.
    Stupp R, Hegi ME, Mason WP et al (2009) Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol 10:459–466CrossRefGoogle Scholar
  3. 3.
    Quail DF, Joyce JA (2017) The microenvironmental landscape of brain tumors. Cancer Cell 31:326–341CrossRefGoogle Scholar
  4. 4.
    Verhaak RG, Hoadley KA, Purdom E et al (2010) Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 17:98–110CrossRefGoogle Scholar
  5. 5.
    Chen Z, Hambardzumyan D (2018) Immune microenvironment in glioblastoma subtypes. Front Immunol 9:1004CrossRefGoogle Scholar
  6. 6.
    Gabrusiewicz K, Rodriguez B, Wei J et al (2016) Glioblastoma-infiltrated innate immune cells resemble M0 macrophage phenotype. JCI Insight. Google Scholar
  7. 7.
    Fourgeaud L, Traves PG, Tufail Y et al (2016) TAM receptors regulate multiple features of microglial physiology. Nature 532:240–244CrossRefGoogle Scholar
  8. 8.
    Capper D, Jones DTW, Sill M et al (2018) DNA methylation-based classification of central nervous system tumours. Nature 555:469–474CrossRefGoogle Scholar
  9. 9.
    Sattiraju A, Sai KKS, Mintz A (2017) Glioblastoma stem cells and their microenvironment. Adv Exp Med Biol 1041:119–140CrossRefGoogle Scholar
  10. 10.
    Charles NA, Holland EC, Gilbertson R, Glass R, Kettenmann H (2011) The brain tumor microenvironment. Glia 59:1169–1180CrossRefGoogle Scholar
  11. 11.
    Kennedy BC, Showers CR, Anderson DE et al (2013) Tumor-associated macrophages in glioma: friend or foe? J Oncol 2013:486912CrossRefGoogle Scholar
  12. 12.
    Chen Z, Feng X, Herting CJ et al (2017) Cellular and molecular identity of tumor-associated macrophages in glioblastoma. Cancer Res 77:2266–2278CrossRefGoogle Scholar
  13. 13.
    Pyonteck SM, Akkari L, Schuhmacher AJ et al (2013) CSF-1R inhibition alters macrophage polarization and blocks glioma progression. Nat Med 19:1264–1272CrossRefGoogle Scholar
  14. 14.
    Martinon F, Tschopp J (2007) Inflammatory caspases and inflammasomes: master switches of inflammation. Cell Death Differ 14:10–22CrossRefGoogle Scholar
  15. 15.
    Mamik MK, Power C (2017) Inflammasomes in neurological diseases: emerging pathogenic and therapeutic concepts. Brain 140:2273–2285CrossRefGoogle Scholar
  16. 16.
    He Q, Fu Y, Tian D, Yan W (2018) The contrasting roles of inflammasomes in cancer. Am J Cancer Res 8:566–583Google Scholar
  17. 17.
    Tarassishin L, Casper D, Lee SC (2014) Aberrant expression of interleukin-1beta and inflammasome activation in human malignant gliomas. PLoS ONE 9:e103432CrossRefGoogle Scholar
  18. 18.
    Choubey D (2016) Absent in melanoma 2 proteins in the development of cancer. Cell Mol Life Sci 73:4383–4395CrossRefGoogle Scholar
  19. 19.
    Liu G, Yu JS, Zeng G et al (2004) AIM-2: a novel tumor antigen is expressed and presented by human glioma cells. J Immunother 27:220–226CrossRefGoogle Scholar
  20. 20.
    Boghozian R, McKenzie BA, Saito LB et al (2017) Suppressed oligodendrocyte steroidogenesis in multiple sclerosis: implications for regulation of neuroinflammation. Glia 65:1590–1606CrossRefGoogle Scholar
  21. 21.
    Mamik MK, Hui E, Branton WG et al (2017) HIV-1 viral protein R activates NLRP3 inflammasome in microglia: implications for HIV-1 associated neuroinflammation. J Neuroimmune Pharmacol 12:233–248CrossRefGoogle Scholar
  22. 22.
    McKenzie BA, Mamik MK, Saito LB et al (2018) Caspase-1 inhibition prevents glial inflammasome activation and pyroptosis in models of multiple sclerosis. Proc Natl Acad Sci USA 115:E6065–E6074CrossRefGoogle Scholar
  23. 23.
    Power C, Henry S, Del Bigio MR et al (2003) Intracerebral hemorrhage induces macrophage activation and matrix metalloproteinases. Ann Neurol 53:731–742CrossRefGoogle Scholar
  24. 24.
    Branton WG, Lu JQ, Surette MG et al (2016) Brain microbiota disruption within inflammatory demyelinating lesions in multiple sclerosis. Sci Rep 6:37344CrossRefGoogle Scholar
  25. 25.
    Banerjee I, Behl B, Mendonca M et al (2018) Gasdermin D restrains Type I interferon response to cytosolic DNA by disrupting ionic homeostasis. Immunity 49(413–426):e415Google Scholar
  26. 26.
    McKenzie BA, Zemp FJ, Pisklakova A et al (2015) In vitro screen of a small molecule inhibitor drug library identifies multiple compounds that synergize with oncolytic myxoma virus against human brain tumor-initiating cells. Neuro Oncol 17:1086–1094CrossRefGoogle Scholar
  27. 27.
    Qu F, Holloway JL, Esterhai JL, Burdick JA, Mauck RL (2017) Programmed biomolecule delivery to enable and direct cell migration for connective tissue repair. Nat Commun 8:1780CrossRefGoogle Scholar
  28. 28.
    Fernandes-Alnemri T, Yu JW, Datta P, Wu J, Alnemri ES (2009) AIM2 activates the inflammasome and cell death in response to cytoplasmic DNA. Nature 458:509–513CrossRefGoogle Scholar
  29. 29.
    Karki R, Man SM, Kanneganti TD (2017) Inflammasomes and cancer. Cancer Immunol Res 5:94–99CrossRefGoogle Scholar
  30. 30.
    Zhou W, Ke SQ, Huang Z et al (2015) Periostin secreted by glioblastoma stem cells recruits M2 tumour-associated macrophages and promotes malignant growth. Nat Cell Biol 17:170–182CrossRefGoogle Scholar
  31. 31.
    Walsh JG, Reinke SN, Mamik MK et al (2014) Rapid inflammasome activation in microglia contributes to brain disease in HIV/AIDS. Retrovirology 11:35CrossRefGoogle Scholar
  32. 32.
    Vilaysane A, Muruve DA (2009) The innate immune response to DNA. Semin Immunol 21:208–214CrossRefGoogle Scholar
  33. 33.
    Walsh JG, Muruve DA, Power C (2014) Inflammasomes in the CNS. Nat Rev Neurosci 15:84–97CrossRefGoogle Scholar
  34. 34.
    Ge L, Cornforth AN, Hoa NT et al (2012) Differential glioma-associated tumor antigen expression profiles of human glioma cells grown in hypoxia. PLoS ONE 7:e42661CrossRefGoogle Scholar
  35. 35.
    Lugrin J, Martinon F (2018) The AIM2 inflammasome: sensor of pathogens and cellular perturbations. Immunol Rev 281:99–114CrossRefGoogle Scholar
  36. 36.
    Gaidt MM, Ebert TS, Chauhan D et al (2017) The DNA inflammasome in human myeloid cells is initiated by a STING-cell death program upstream of NLRP3. Cell 171(1110–1124):e1118Google Scholar
  37. 37.
    Mamik MK, Asahchop EL, Chan WF et al (2016) Insulin treatment prevents neuroinflammation and neuronal injury with restored neurobehavioral function in models of HIV/AIDS neurodegeneration. J Neurosci 36:10683–10695CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • P. A. Chen
    • 1
  • G. Shrivastava
    • 1
  • E. F. Balcom
    • 1
  • B. A. McKenzie
    • 2
  • J. Fernandes
    • 1
  • W. G. Branton
    • 1
  • B. M. Wheatley
    • 3
  • K. Petruk
    • 3
  • F. K. H. van Landeghem
    • 4
  • Christopher Power
    • 1
    • 2
    Email author
  1. 1.Department of Medicine (Neurology), HMRC 6-11University of AlbertaEdmontonCanada
  2. 2.Department of Medical Microbiology & ImmunologyUniversity of AlbertaEdmontonCanada
  3. 3.Department of SurgeryUniversity of AlbertaEdmontonCanada
  4. 4.Laboratory Medicine & PathologyUniversity of AlbertaEdmontonCanada

Personalised recommendations