Advertisement

Evaluation of pediatric glioma outcomes using intraoperative MRI: a multicenter cohort study

  • Michael Karsy
  • S. Hassan Akbari
  • David Limbrick
  • Eric C. Leuthardt
  • John Evans
  • Matthew D. Smyth
  • Jennifer Strahle
  • Jeffrey Leonard
  • Samuel Cheshier
  • Douglas L. Brockmeyer
  • Robert J. Bollo
  • John R. Kestle
  • John Honeycutt
  • David J. Donahue
  • Richard A. Roberts
  • Daniel R. Hansen
  • Jay Riva-Cambrin
  • Garnette Sutherland
  • Clair Gallagher
  • Walter Hader
  • Yves Starreveld
  • Mark Hamilton
  • Ann-Christine Duhaime
  • Randy L. JensenEmail author
  • Michael R. Chicoine
Clinical Study

Abstract

Background

The use of intraoperative MRI (iMRI) during treatment of gliomas may increase extent of resection (EOR), decrease need for early reoperation, and increase progression-free and overall survival, but has not been fully validated, particularly in the pediatric population.

Objective

To assess the accuracy of iMRI to identify residual tumor in pediatric patients with glioma and determine the effect of iMRI on decisions for resection, complication rates, and other outcomes.

Methods

We retrospectively analyzed a multicenter database of pediatric patients (age ≤ 18 years) who underwent resection of pathologically confirmed gliomas.

Results

We identified 314 patients (mean age 9.7 ± 4.6 years) with mean follow-up of 48.3 ± 33.6 months (range 0.03–182.07 months) who underwent surgery with iMRI. There were 201 (64.0%) WHO grade I tumors, 57 (18.2%) grade II, 24 (7.6%) grade III, 9 (2.9%) grade IV, and 23 (7.3%) not classified. Among 280 patients who underwent resection using iMRI, 131 (46.8%) had some residual tumor and underwent additional resection after the first iMRI. Of the 33 tissue specimens sent for pathological analysis after iMRI, 29 (87.9%) showed positive tumor pathology. Gross total resection was identified in 156 patients (55.7%), but this was limited by 69 (24.6%) patients with unknown EOR.

Conclusions

Analysis of the largest multicenter database of pediatric gliomas resected using iMRI demonstrated additional tumor resection in a substantial portion of cases. However, determining the impact of iMRI on EOR and outcomes remains challenging because iMRI use varies among providers nationally. Continued refinement of iMRI techniques for use in pediatric patients with glioma may improve outcomes.

Keywords

Intraoperative MRI iMRI Glioma Pediatric Outcome Extent of resection World Health of Organization WHO grade 

Notes

Acknowledgements

The authors thank Kristin Kraus, M.Sc., for her editorial assistance.

Funding

Funding for establishment and maintenance of the IMRIS iMRI Neurosurgery Database (I-MiND) was provided in part by an unrestricted educational grant from IMRIS, Inc (Minnetonka, MN) and individual participating institutions.

Supplementary material

11060_2019_3154_MOESM1_ESM.tif (3.9 mb)
Supplementary Figure S1: Distribution of age and tumor size for cohort. A) Patient age and B) tumor size approximate normal distributions (TIF 3943 KB)
11060_2019_3154_MOESM2_ESM.tif (2.6 mb)
Supplementary Figure S2: Evaluation of overall survival (OS) depending on WHO grade for cohort. Evaluation of OS for WHO grade A) I, B) II, C) III, and D) IV tumors is shown. No significant difference in OS was seen based on WHO grade. (TIF 2663 KB)
11060_2019_3154_MOESM3_ESM.tif (2.8 mb)
Supplementary Figure S3: Evaluation of progression-free survival (OS) depending on WHO grade for cohort. Evaluation of PFS for WHO grade A) I, B) II, C) III, and D) IV tumors is shown. No significant difference in PFS was seen based on WHO grade (TIF 2824 KB)

References

  1. 1.
    Sturm D, Pfister SM, Jones DTW (2017) Pediatric gliomas: current concepts on diagnosis, biology, and clinical management. J Clin Oncol 35(21):2370–2377CrossRefGoogle Scholar
  2. 2.
    Karsy M, Guan J, Cohen AL, Jensen RL, Colman H (2017) New molecular considerations for glioma: IDH, ATRX, BRAF, TERT, H3 K27M. Curr Neurol Neurosci Rep 17(2):19CrossRefGoogle Scholar
  3. 3.
    Rao G. Intraoperative (2017) MRI and maximizing extent of resection. Neurosurg Clin N Am 28(4):477–485CrossRefGoogle Scholar
  4. 4.
    Lau D, Hervey-Jumper SL, Han SJ, Berger MS (2018) Intraoperative perception and estimates on extent of resection during awake glioma surgery: overcoming the learning curve. J Neurosurg 128(5):1410–1418CrossRefGoogle Scholar
  5. 5.
    Roder C, Bisdas S, Ebner FH et al (2014) Maximizing the extent of resection and survival benefit of patients in glioblastoma surgery: high-field iMRI versus conventional and 5-ALA-assisted surgery. Eur J Surg Oncol 40(3):297–304CrossRefGoogle Scholar
  6. 6.
    Roder C, Breitkopf M, Ms et al (2016) Beneficial impact of high-field intraoperative magnetic resonance imaging on the efficacy of pediatric low-grade glioma surgery. Neurosurg Focus 40(3):E13CrossRefGoogle Scholar
  7. 7.
    Senft C, Bink A, Franz K et al (2011) Intraoperative MRI guidance and extent of resection in glioma surgery: a randomised, controlled trial. Lancet Oncol 12(11):997–1003CrossRefGoogle Scholar
  8. 8.
    Wu JS, Gong X, Song YY et al (2014) 3.0-T intraoperative magnetic resonance imaging-guided resection in cerebral glioma surgery: interim analysis of a prospective, randomized, triple-blind, parallel-controlled trial. Neurosurgery 61(Suppl 1):145–154CrossRefGoogle Scholar
  9. 9.
    Samdani AF, Schulder M, Catrambone JE, Carmel PW (2005) Use of a compact intraoperative low-field magnetic imager in pediatric neurosurgery. Childs Nerv Syst 21(2):108–113; discussion 114CrossRefGoogle Scholar
  10. 10.
    Shah MN, Leonard JR, Inder G et al (2012) Intraoperative magnetic resonance imaging to reduce the rate of early reoperation for lesion resection in pediatric neurosurgery. J Neurosurg Pediatr 9(3):259–264CrossRefGoogle Scholar
  11. 11.
    Tejada S, Avula S, Pettorini B et al (2018) The impact of intraoperative magnetic resonance in routine pediatric neurosurgical practice-a 6-year appraisal. Childs Nerv Syst 34(4):617–626CrossRefGoogle Scholar
  12. 12.
    Kaya S, Deniz S, Duz B, Daneyemez M, Gonul E (2012) Use of an ultra-low field intraoperative MRI system for pediatric brain tumor cases: initial experience with ‘PoleStar N20’. Turk Neurosurg 22(2):218–225Google Scholar
  13. 13.
    Kubben PL, ter Meulen KJ, Schijns OE et al (2011) Intraoperative MRI-guided resection of glioblastoma multiforme: a systematic review. Lancet Oncol 12(11):1062–1070CrossRefGoogle Scholar
  14. 14.
    Theodosopoulos PV, Leach J, Kerr RG et al (2010) Maximizing the extent of tumor resection during transsphenoidal surgery for pituitary macroadenomas: can endoscopy replace intraoperative magnetic resonance imaging? J Neurosurg 112(4):736–743CrossRefGoogle Scholar
  15. 15.
    Sylvester PT, Evans JA, Zipfel GJ et al (2015) Combined high-field intraoperative magnetic resonance imaging and endoscopy increase extent of resection and progression-free survival for pituitary adenomas. Pituitary 18(1):72–85CrossRefGoogle Scholar
  16. 16.
    Schwartz TH, Stieg PE, Anand VK. Endoscopic transsphenoidal pituitary surgery with intraoperative magnetic resonance imaging. Neurosurgery. 2006;58(1 Suppl):ONS44-51; discussion ONS44-51.Google Scholar
  17. 17.
    Leuthardt EC, Lim CC, Shah MN et al (2011) Use of movable high-field-strength intraoperative magnetic resonance imaging with awake craniotomies for resection of gliomas: preliminary experience. Neurosurgery 69(1):194–205; discussion 205 – 196CrossRefGoogle Scholar
  18. 18.
    Giordano M, Samii A, Lawson McLean AC et al (2017) Intraoperative magnetic resonance imaging in pediatric neurosurgery: safety and utility. J Neurosurg Pediatr 19(1):77–84CrossRefGoogle Scholar
  19. 19.
    Chen LF, Yang Y, Ma XD et al (2017) Optimizing the extent of resection and minimizing the morbidity in insular high-grade glioma surgery by high-field intraoperative MRI guidance. Turk Neurosurg 27(5):696–706Google Scholar
  20. 20.
    Coburger J, Wirtz CR, Konig RW (2017) Impact of extent of resection and recurrent surgery on clinical outcome and overall survival in a consecutive series of 170 patients for glioblastoma in intraoperative high field magnetic resonance imaging. J Neurosurg Sci 61(3):233–244Google Scholar
  21. 21.
    Coburger J, Merkel A, Scherer M et al (2016) Low-grade glioma surgery in intraoperative magnetic resonance imaging: results of a multicenter retrospective assessment of the german study group for intraoperative magnetic resonance imaging. Neurosurgery 78(6):775–786CrossRefGoogle Scholar
  22. 22.
    Jenkinson MD, Barone DG, Bryant A et al (2018) Intraoperative imaging technology to maximise extent of resection for glioma. Cochrane Database Syst Rev 1:CD012788Google Scholar
  23. 23.
    Li P, Qian R, Niu C, Fu X (2017) Impact of intraoperative MRI-guided resection on resection and survival in patient with gliomas: a meta-analysis. Curr Med Res Opin 33(4):621–630CrossRefGoogle Scholar
  24. 24.
    Coburger J, Hagel V, Wirtz CR, Konig R (2015) Surgery for glioblastoma: impact of the combined use of 5-aminolevulinic acid and intraoperative MRI on extent of resection and survival. PLoS ONE 10(6):e0131872CrossRefGoogle Scholar
  25. 25.
    Quick-Weller J, Lescher S, Forster MT et al (2016) Combination of 5-ALA and iMRI in re-resection of recurrent glioblastoma. Br J Neurosurg 30(3):313–317CrossRefGoogle Scholar
  26. 26.
    Nickel K, Renovanz M, Konig J et al (2018) The patients’ view: impact of the extent of resection, intraoperative imaging, and awake surgery on health-related quality of life in high-grade glioma patients-results of a multicenter cross-sectional study. Neurosurg Rev 41(1):207–219CrossRefGoogle Scholar
  27. 27.
    Coburger J, Nabavi A, Konig R, Wirtz CR, Pala A (2017) Contemporary use of intraoperative imaging in glioma surgery: a survey among EANS members. Clin Neurol Neurosurg 163:133–141CrossRefGoogle Scholar
  28. 28.
    Suero Molina E, Schipmann S, Stummer W. Maximizing safe resections: the roles of 5-aminolevulinic acid and intraoperative MR imaging in glioma surgery-review of the literature. Neurosurg Rev 2017Google Scholar
  29. 29.
    Motomura K, Natsume A, Iijima K et al (2017) Surgical benefits of combined awake craniotomy and intraoperative magnetic resonance imaging for gliomas associated with eloquent areas. J Neurosurg 127(4):790–797CrossRefGoogle Scholar
  30. 30.
    Lam CH, Hall WA, Truwit CL, Liu H (2001) Intra-operative MRI-guided approaches to the pediatric posterior fossa tumors. Pediatr Neurosurg 34(6):295–300CrossRefGoogle Scholar
  31. 31.
    Hall WA, Kowalik K, Liu H, Truwit CL, Kucharezyk J (2003) Costs and benefits of intraoperative MR-guided brain tumor resection. Acta Neurochir Suppl 85:137–142CrossRefGoogle Scholar
  32. 32.
    Nimsky C, Ganslandt O, Gralla J, Buchfelder M, Fahlbusch R (2003) Intraoperative low-field magnetic resonance imaging in pediatric neurosurgery. Pediatr Neurosurg 38(2):83–89CrossRefGoogle Scholar
  33. 33.
    Roth J, Beni Adani L, Biyani N, Constantini S (2006) Intraoperative portable 0.12-tesla MRI in pediatric neurosurgery. Pediatr Neurosurg 42(2):74–80CrossRefGoogle Scholar
  34. 34.
    Kremer P, Tronnier V, Steiner HH et al (2006) Intraoperative MRI for interventional neurosurgical procedures and tumor resection control in children. Childs Nerv Syst 22(7):674–678CrossRefGoogle Scholar
  35. 35.
    Levy R, Cox RG, Hader WJ et al (2009) Application of intraoperative high-field magnetic resonance imaging in pediatric neurosurgery. J Neurosurg Pediatr 4(5):467–474CrossRefGoogle Scholar
  36. 36.
    Chicoine MR, Lim CC, Evans JA et al (2011) Implementation and preliminary clinical experience with the use of ceiling mounted mobile high field intraoperative magnetic resonance imaging between two operating rooms. Acta Neurochir Suppl 109:97–102CrossRefGoogle Scholar
  37. 37.
    Yousaf J, Avula S, Abernethy LJ, Mallucci CL (2012) Importance of intraoperative magnetic resonance imaging for pediatric brain tumor surgery. Surg Neurol Int 3(Suppl 2):S65–S72Google Scholar
  38. 38.
    Kubben PL, van Santbrink H, ter Laak-Poort M et al (2012) Implementation of a mobile 0.15-T intraoperative MR system in pediatric neuro-oncological surgery: feasibility and correlation with early postoperative high-field strength MRI. Childs Nerv Syst 28(8):1171–1180CrossRefGoogle Scholar
  39. 39.
    Avula S, Pettorini B, Abernethy L et al (2013) High field strength magnetic resonance imaging in paediatric brain tumour surgery–its role in prevention of early repeat resections. Childs Nerv Syst 29(10):1843–1850CrossRefGoogle Scholar
  40. 40.
    Choudhri AF, Klimo P Jr, Auschwitz TS, Whitehead MT, Boop FA (2014) 3T intraoperative MRI for management of pediatric CNS neoplasms. AJNR Am J Neuroradiol 35(12):2382–2387CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Michael Karsy
    • 1
  • S. Hassan Akbari
    • 2
  • David Limbrick
    • 2
  • Eric C. Leuthardt
    • 2
  • John Evans
    • 2
  • Matthew D. Smyth
    • 2
  • Jennifer Strahle
    • 2
  • Jeffrey Leonard
    • 3
  • Samuel Cheshier
    • 1
  • Douglas L. Brockmeyer
    • 1
  • Robert J. Bollo
    • 1
  • John R. Kestle
    • 1
  • John Honeycutt
    • 4
  • David J. Donahue
    • 4
  • Richard A. Roberts
    • 4
  • Daniel R. Hansen
    • 4
  • Jay Riva-Cambrin
    • 5
  • Garnette Sutherland
    • 5
  • Clair Gallagher
    • 5
  • Walter Hader
    • 5
  • Yves Starreveld
    • 5
  • Mark Hamilton
    • 5
  • Ann-Christine Duhaime
    • 6
  • Randy L. Jensen
    • 1
    • 7
    Email author
  • Michael R. Chicoine
    • 2
  1. 1.Department of NeurosurgeryUniversity of UtahSalt Lake CityUSA
  2. 2.Department of NeurosurgeryWashington University School of MedicineSt. LouisUSA
  3. 3.Department of NeurosurgeryNationwide Children’s HospitalColumbusUSA
  4. 4.Department of NeurosurgeryCook Children’s NeurosciencesForth WorthUSA
  5. 5.Department of NeurosurgeryUniversity of CalgaryCalgaryCanada
  6. 6.Department of NeurosurgeryMassachusetts General Hospital for ChildrenBostonUSA
  7. 7.Huntsman Cancer InstituteUniversity of UtahSalt Lake CityUSA

Personalised recommendations