Advertisement

MicroRNA regulating stanniocalcin-1 is a metastasis and dissemination promoting factor in glioblastoma

  • Junichi Sakata
  • Takashi SasayamaEmail author
  • Kazuhiro Tanaka
  • Hiroaki Nagashima
  • Mitsutoshi Nakada
  • Hirotomo Tanaka
  • Naoya Hashimoto
  • Naoki Kagawa
  • Manabu Kinoshita
  • Satoshi Nakamizo
  • Masahiro Maeyama
  • Masamitsu Nishihara
  • Kohkichi Hosoda
  • Eiji Kohmura
Laboratory Investigation

Abstract

Background

MicroRNAs (miRs) regulate many biological processes, such as invasion, angiogenesis, and metastasis. Glioblastoma (GBM) patients with metastasis/metastatic dissemination have a very poor prognosis; therefore, inhibiting metastasis/metastatic dissemination has become an important therapeutic strategy for GBM treatment.

Methods

Using 76 GBM tissues, we examined the expression levels of 23 GBM-related miRs and compared the miRs’ expression levels between GBMs with metastasis/metastatic dissemination and GBMs without metastasis/metastatic dissemination. Using the bioinformatics web site, we searched the target genes of miRs. To analyze the function of target gene, several biological assays and survival analysis by the Kaplan–Meier method were performed.

Results

We found that eight miRs were significantly decreased in GBM with metastasis/metastatic dissemination. By the bioinformatics analysis, we identified stanniocalcin-1 (STC1) as the most probable target gene against the combination of these miRs. Four miRs (miR-29B, miR-34a, miR-101, and miR-137) have predictive binding sites in STC1 mRNA, and mRNA expression of STC1 was downregulated by mimics of these miRs. Also, mimics of these miRs and knockdown of STC1 by siRNA suppressed invasion in GBM cells. GBM with metastasis/metastatic dissemination had significantly higher levels of STC1 than GBM without metastasis/metastatic dissemination. Finally, Kaplan–Meier analysis demonstrated that GBMs with high STC1 level had significantly shorter survival than GBMs with low STC1 level.

Conclusions

STC1 may be a novel metastasis/metastatic dissemination promoting factor regulated by several miRs in GBM. Because STC1 is a secreted glycoprotein and functions via the autocrine/paracrine signals, inhibiting STC1 signal may become a novel therapeutic strategy for GBM.

Keywords

STC1 Metastases Dissemination Glioblastoma MicroRNA Biomarker 

Notes

Acknowledgements

We thank Naoko Sato and Takiko Uno for performing the immunohistochemical experiments.

Funding

This study was supported in part by a Grant-in-Aid for Scientific Research to Eiji Kohmura (17K10898), Takashi Sasayama (17K10863), and Kazuhiro Tanaka (17K10864), Satoshi Nakamizo (17K16648), Hirotomo Tanaka (16K20010), and Masamitsu Nishihara (15K10332) from the Japanese Ministry of Education, Culture, Sports, Science, and Technology.

Compliance with ethical standards

Conflict of interest

There are no potential conflicts of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. This study was approved by the institutional ethics board (Nos. 1160 and 1518, and No. 1714 in Kobe University Hospital, No. 2016-383 (1521) in Kanazawa University Hospital, No. 14072 in Osaka University Hospital, No 1312245169 in Osaka International Cancer Institute).

Informed consent

Informed consent was obtained from all individual participants included in the study.

Supplementary material

11060_2019_3113_MOESM1_ESM.pptx (141 kb)
Supplemental Figure 1. Comparison of miR expressions between GBM with metastasis/metastatic dissemination (M/D) (M/D(+)) and GBM without metastasis/metastatic dissemination (M/D(−)) in other 19 miRs. Expressions of 4 miRs (miR-7, miR-124, miR-128a, and miR-218) in GBM with metastasis/metastatic dissemination are significantly lower than those in GBM without metastasis/metastatic dissemination (**: P < 0.001, *: p < 0.01) (PPTX 141 KB)
11060_2019_3113_MOESM2_ESM.pptx (325 kb)
Supplemental Figure 2. A: Cell proliferation assay of A172 cells transfected with mimic of miR-29b, miR-34a, and miR-101. Cell proliferation is inhibited by miR mimics. B: WST-8 assay of A172 cells transfected with miR mimics (*: p < 0.05). C: Cell cycle analysis by FACS of A172 cells transfected with miR mimics. Percentage of G1 cells was increased by mimics of miRs. D: A trans-well matrigel invasion assay of A172 cells transfected with miR mimics. Twenty-four hours after transfection, invasion cells are counted. Cell invasion is inhibited by miR mimics (*: p < 0.05) (PPTX 324 KB)
11060_2019_3113_MOESM3_ESM.pptx (49 kb)
Supplemental Figure 3. A: Comparison of STC1 concentration in cerebrospinal fluid (CSF) among glioma World Health Organization (WHO) grades. Concentration of CSF STC1 in grade IV (GBM) is significantly higher than that in grade I and grade II gliomas. B: Comparison of Kaplan–Meier curves of overall survival (OS) according to metastasis/metastatic dissemination. The GBM with metastasis/metastatic dissemination (M/D(+)) have significantly shorter OS (Log-rank; p < 0.0001) (PPTX 48 KB)
11060_2019_3113_MOESM4_ESM.docx (22 kb)
Supplementary material 4 (DOCX 21 KB)
11060_2019_3113_MOESM5_ESM.docx (18 kb)
Supplementary material 5 (DOCX 18 KB)
11060_2019_3113_MOESM6_ESM.docx (18 kb)
Supplementary material 6 (DOCX 18 KB)

References

  1. 1.
    Piccirilli M, Brunetto GM, Rocchi G, Giangaspero F, Salvati M (2008) Extra central nervous system metastases from cerebral glioblastoma multiforme in elderly patients. Clinico-pathological remarks on our series of seven cases and critical review of the literature. Tumori J 94:40–51CrossRefGoogle Scholar
  2. 2.
    Sharma D, Gupta A, Dhillon GS, Chhabra SS (2016) Late onset leptomeningeal and whole spine metastasis from supratentorial glioblastoma multiforme: An uncommon manifestation of a common tumor. J Craniovertebr Junction Spine 7:118–120.  https://doi.org/10.4103/0974-8237.181878 CrossRefGoogle Scholar
  3. 3.
    Stark AM, Nabavi A, Mehdorn HM, Blomer U (2005) Glioblastoma multiforme-report of 267 cases treated at a single institution. Surg Neurol 63:162–169.  https://doi.org/10.1016/j.surneu.2004.01.028 (discussion 169)CrossRefGoogle Scholar
  4. 4.
    Kyritsis AP, Levin VA, Yung WK, Leeds NE (1993) Imaging patterns of multifocal gliomas. Eur J Radiol 16:163–170CrossRefGoogle Scholar
  5. 5.
    Nakada M, Nakada S, Demuth T, Tran NL, Hoelzinger DB, Berens ME (2007) Molecular targets of glioma invasion. Cell Mol Life Sci 64:458–478.  https://doi.org/10.1007/s00018-007-6342-5 CrossRefGoogle Scholar
  6. 6.
    Paw I, Carpenter RC, Watabe K, Debinski W, Lo HW (2015) Mechanisms regulating glioma invasion. Cancer Lett 362:1–7.  https://doi.org/10.1016/j.canlet.2015.03.015 CrossRefGoogle Scholar
  7. 7.
    Pu P, Zhang Z, Kang C, Jiang R, Jia Z, Wang G, Jiang H (2009) Downregulation of Wnt2 and beta-catenin by siRNA suppresses malignant glioma cell growth. Cancer Gene Ther 16:351–361.  https://doi.org/10.1038/cgt.2008.78 CrossRefGoogle Scholar
  8. 8.
    Zhu Y, Yang P, Zhang X, Zhang L, Cui G, Wang Q, Lv L, Zhang Y, Xin X, Yan T, Zhao M, Zhang N (2013) The effect and mechanism of CXCR4 silencing on metastasis suppression of human glioma U87 cell line. Anat Rec (Hoboken) 296:1857–1864.  https://doi.org/10.1002/ar.22825 CrossRefGoogle Scholar
  9. 9.
    Zhang S, Lai N, Liao K, Sun J, Lin Y (2015) MicroRNA-210 regulates cell proliferation and apoptosis by targeting regulator of differentiation 1 in glioblastoma cells. Folia Neuropathol 53:236–244.  https://doi.org/10.5114/fn.2015.54424 CrossRefGoogle Scholar
  10. 10.
    Dalmay T, Edwards DR (2006) MicroRNAs and the hallmarks of cancer. Oncogene 25:6170–6175.  https://doi.org/10.1038/sj.onc.1209911 CrossRefGoogle Scholar
  11. 11.
    Ma C, Liu Y, He L (2009) MicroRNAs—powerful repression comes from small RNAs. Sci China C Life Sci 52:323–330.  https://doi.org/10.1007/s11427-009-0056-x CrossRefGoogle Scholar
  12. 12.
    Shea A, Harish V, Afzal Z, Chijioke J, Kedir H, Dusmatova S, Roy A, Ramalinga M, Harris B, Blancato J, Verma M, Kumar D (2016) MicroRNAs in glioblastoma multiforme pathogenesis and therapeutics. Cancer Med 5:1917–1946.  https://doi.org/10.1002/cam4.775 CrossRefGoogle Scholar
  13. 13.
    Ciafre SA, Galardi S, Mangiola A, Ferracin M, Liu CG, Sabatino G, Negrini M, Maira G, Croce CM, Farace MG (2005) Extensive modulation of a set of microRNAs in primary glioblastoma. Biochem Biophys Res Commun 334:1351–1358.  https://doi.org/10.1016/j.bbrc.2005.07.030 CrossRefGoogle Scholar
  14. 14.
    Chan JA, Krichevsky AM, Kosik KS (2005) MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res 65:6029–6033.  https://doi.org/10.1158/0008-5472.CAN-05-0137 CrossRefGoogle Scholar
  15. 15.
    Sasayama T, Nishihara M, Kondoh T, Hosoda K, Kohmura E (2009) MicroRNA-10b is overexpressed in malignant glioma and associated with tumor invasive factors, uPAR and RhoC. Int J Cancer 125:1407–1413.  https://doi.org/10.1002/ijc.24522 CrossRefGoogle Scholar
  16. 16.
    Tanaka H, Sasayama T, Tanaka K, Nakamizo S, Nishihara M, Mizukawa K, Kohta M, Koyama J, Miyake S, Taniguchi M, Hosoda K, Kohmura E (2013) MicroRNA-183 upregulates HIF-1alpha by targeting isocitrate dehydrogenase 2 (IDH2) in glioma cells. J Neurooncol 111:273–283.  https://doi.org/10.1007/s11060-012-1027-9 CrossRefGoogle Scholar
  17. 17.
    Chen R, Liu H, Cheng Q, Jiang B, Peng R, Zou Q, Yang W, Yang X, Wu X, Chen Z (2016) MicroRNA-93 promotes the malignant phenotypes of human glioma cells and induces their chemoresistance to temozolomide. Biol Open 5:669–677.  https://doi.org/10.1242/bio.015552 CrossRefGoogle Scholar
  18. 18.
    Fang L, Deng Z, Shatseva T, Yang J, Peng C, Du WW, Yee AJ, Ang LC, He C, Shan SW, Yang BB (2011) MicroRNA miR-93 promotes tumor growth and angiogenesis by targeting integrin-beta8. Oncogene 30:806–821.  https://doi.org/10.1038/onc.2010.465 CrossRefGoogle Scholar
  19. 19.
    Bier A, Giladi N, Kronfeld N, Lee HK, Cazacu S, Finniss S, Xiang C, Poisson L, deCarvalho AC, Slavin S, Jacoby E, Yalon M, Toren A, Mikkelsen T, Brodie C (2013) MicroRNA-137 is downregulated in glioblastoma and inhibits the stemness of glioma stem cells by targeting RTVP-1. Oncotarget 4:665–676.  https://doi.org/10.18632/oncotarget.928 CrossRefGoogle Scholar
  20. 20.
    Sun J, Zheng G, Gu Z, Guo Z (2015) MiR-137 inhibits proliferation and angiogenesis of human glioblastoma cells by targeting EZH2. J Neurooncol 122:481–489.  https://doi.org/10.1007/s11060-015-1753-x CrossRefGoogle Scholar
  21. 21.
    Moller HG, Rasmussen AP, Andersen HH, Johnsen KB, Henriksen M, Duroux M (2013) A systematic review of microRNA in glioblastoma multiforme: micro-modulators in the mesenchymal mode of migration and invasion. Mol Neurobiol 47:131–144.  https://doi.org/10.1007/s12035-012-8349-7 CrossRefGoogle Scholar
  22. 22.
    Karsy M, Arslan E, Moy F (2012) Current progress on understanding microRNAs in glioblastoma multiforme. Genes Cancer 3:3–15.  https://doi.org/10.1177/1947601912448068 CrossRefGoogle Scholar
  23. 23.
    Li J, Yuan J, Yuan X, Zhao J, Zhang Z, Weng L, Liu J (2016) MicroRNA-200b inhibits the growth and metastasis of glioma cells via targeting ZEB2. Int J Oncol 48:541–550.  https://doi.org/10.3892/ijo.2015.3267 CrossRefGoogle Scholar
  24. 24.
    Liu X, Wang S, Yuan A, Yuan X, Liu B (2016) MicroRNA-140 represses glioma growth and metastasis by directly targeting ADAM9. Oncol Rep 36:2329–2338.  https://doi.org/10.3892/or.2016.5007 CrossRefGoogle Scholar
  25. 25.
    Peng T, Zhang S, Li W, Fu S, Luan Y, Zuo L (2016) MicroRNA-141 inhibits glioma cells growth and metastasis by targeting TGF-beta2. Am J Transl Res 8:3513–3521Google Scholar
  26. 26.
    Wendelaar Bonga SE, Pang PK (1991) Control of calcium regulating hormones in the vertebrates: parathyroid hormone, calcitonin, prolactin, and stanniocalcin. Int Rev Cytol 128:139–213CrossRefGoogle Scholar
  27. 27.
    Yeung BH, Law AY, Wong CK (2012) Evolution and roles of stanniocalcin. Mol Cell Endocrinol 349:272–280.  https://doi.org/10.1016/j.mce.2011.11.007 CrossRefGoogle Scholar
  28. 28.
    Chang AC, Jellinek DA, Reddel RR (2003) Mammalian stanniocalcins and cancer. Endocr Relat Cancer 10:359–373CrossRefGoogle Scholar
  29. 29.
    Fujiwara Y, Sugita Y, Nakamori S, Miyamoto A, Shiozaki K, Nagano H, Sakon M, Monden M (2000) Assessment of stanniocalcin-1 mRNA as a molecular marker for micrometastases of various human cancers. Int J Oncol 16:799–804Google Scholar
  30. 30.
    Ma X, Gu L, Li H, Gao Y, Li X, Shen D, Gong H, Li S, Niu S, Zhang Y, Fan Y, Huang Q, Lyu X, Zhang X (2015) Hypoxia-induced overexpression of stanniocalcin-1 is associated with the metastasis of early stage clear cell renal cell carcinoma. J Transl Med 13:56.  https://doi.org/10.1186/s12967-015-0421-4 CrossRefGoogle Scholar
  31. 31.
    Yeung HY, Lai KP, Chan HY, Mak NK, Wagner GF, Wong CK (2005) Hypoxia-inducible factor-1-mediated activation of stanniocalcin-1 in human cancer cells. Endocrinology 146:4951–4960.  https://doi.org/10.1210/en.2005-0365 CrossRefGoogle Scholar
  32. 32.
    Bai Y, Xiao Y, Dai Y, Chen X, Li D, Tan X, Zhang X (2017) Stanniocalcin 1 promotes cell proliferation via cyclin E1/cyclindependent kinase 2 in human prostate carcinoma. Oncol Rep 37:2465–2471.  https://doi.org/10.3892/or.2017.5501 CrossRefGoogle Scholar
  33. 33.
    Liu G, Yang G, Chang B, Mercado-Uribe I, Huang M, Zheng J, Bast RC, Lin SH, Liu J (2010) Stanniocalcin 1 and ovarian tumorigenesis. J Natl Cancer Inst 102:812–827.  https://doi.org/10.1093/jnci/djq127 CrossRefGoogle Scholar
  34. 34.
    Murai R, Tanaka M, Takahashi Y, Kuribayashi K, Kobayashi D, Watanabe N (2014) Stanniocalcin-1 promotes metastasis in a human breast cancer cell line through activation of PI3K. Clin Exp Metastasis 31:787–794.  https://doi.org/10.1007/s10585-014-9668-z CrossRefGoogle Scholar
  35. 35.
    Chang AC, Doherty J, Huschtscha LI, Redvers R, Restall C, Reddel RR, Anderson RL (2015) STC1 expression is associated with tumor growth and metastasis in breast cancer. Clin Exp Metastasis 32:15–27.  https://doi.org/10.1007/s10585-014-9687-9 CrossRefGoogle Scholar
  36. 36.
    Chan KK, Leung CO, Wong CC, Ho DW, Chok KS, Lai CL, Ng IO, Lo RC (2017) Secretory stanniocalcin 1 promotes metastasis of hepatocellular carcinoma through activation of JNK signaling pathway. Cancer Lett 403:330–338.  https://doi.org/10.1016/j.canlet.2017.06.034 CrossRefGoogle Scholar
  37. 37.
    Pena C, Cespedes MV, Lindh MB, Kiflemariam S, Mezheyeuski A, Edqvist PH, Hagglof C, Birgisson H, Bojmar L, Jirstrom K, Sandstrom P, Olsson E, Veerla S, Gallardo A, Sjoblom T, Chang AC, Reddel RR, Mangues R, Augsten M, Ostman A (2013) STC1 expression by cancer-associated fibroblasts drives metastasis of colorectal cancer. Cancer Res 73:1287–1297.  https://doi.org/10.1158/0008-5472.CAN-12-1875 CrossRefGoogle Scholar
  38. 38.
    Clavreul A, Etcheverry A, Chassevent A, Quillien V, Avril T, Jourdan ML, Michalak S, Francois P, Carre JL, Mosser J, Grand Ouest Glioma Project N, Menei P (2012) Isolation of a new cell population in the glioblastoma microenvironment. J Neurooncol 106:493–504.  https://doi.org/10.1007/s11060-011-0701-7 CrossRefGoogle Scholar
  39. 39.
    Su J, Guo B, Zhang T, Wang K, Li X, Liang G (2015) Stanniocalcin-1, a new biomarker of glioma progression, is associated with prognosis of patients. Tumour Biol 36:6333–6339.  https://doi.org/10.1007/s13277-015-3319-0 CrossRefGoogle Scholar
  40. 40.
    Law AY, Wong CK (2013) Stanniocalcin-1 and -2 promote angiogenic sprouting in HUVECs via VEGF/VEGFR2 and angiopoietin signaling pathways. Mol Cell Endocrinol 374:73–81.  https://doi.org/10.1016/j.mce.2013.04.024 CrossRefGoogle Scholar
  41. 41.
    He LF, Wang TT, Gao QY, Zhao GF, Huang YH, Yu LK, Hou YY (2011) Stanniocalcin-1 promotes tumor angiogenesis through up-regulation of VEGF in gastric cancer cells. J Biomed Sci 18:39.  https://doi.org/10.1186/1423-0127-18-39 CrossRefGoogle Scholar
  42. 42.
    Li Y, He ZC, Zhang XN, Liu Q, Chen C, Zhu Z, Chen Q, Shi Y, Yao XH, Cui YH, Zhang X, Wang Y, Kung HF, Ping YF, Bian XW (2018) Stanniocalcin-1 augments stem-like traits of glioblastoma cells through binding and activating NOTCH1. Cancer Lett 416:66–74.  https://doi.org/10.1016/j.canlet.2017.11.033 CrossRefGoogle Scholar
  43. 43.
    De Martino I, Visone R, Fedele M, Petrocca F, Palmieri D, Martinez Hoyos J, Forzati F, Croce CM, Fusco A (2009) Regulation of microRNA expression by HMGA1 proteins. Oncogene 28:1432–1442.  https://doi.org/10.1038/onc.2008.495 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Junichi Sakata
    • 1
  • Takashi Sasayama
    • 1
    Email author
  • Kazuhiro Tanaka
    • 1
  • Hiroaki Nagashima
    • 1
  • Mitsutoshi Nakada
    • 2
  • Hirotomo Tanaka
    • 1
  • Naoya Hashimoto
    • 3
  • Naoki Kagawa
    • 4
  • Manabu Kinoshita
    • 4
  • Satoshi Nakamizo
    • 1
  • Masahiro Maeyama
    • 1
  • Masamitsu Nishihara
    • 5
  • Kohkichi Hosoda
    • 5
  • Eiji Kohmura
    • 1
  1. 1.Department of NeurosurgeryKobe University Graduate School of MedicineKobeJapan
  2. 2.Department of NeurosurgeryKanazawa UniversityKanazawaJapan
  3. 3.Department of NeurosurgeryKyoto Prefectural University Graduate School of Medical ScienceKyotoJapan
  4. 4.Department of NeurosurgeryOsaka University Graduate School of MedicineSuitaJapan
  5. 5.Department of NeurosurgeryWest Kobe Medical CenterKobeJapan

Personalised recommendations