Advertisement

Effects of 5-ALA dose on resection of glioblastoma

  • Alex P. Michael
  • Victoria L. Watson
  • Daniel Ryan
  • Kristin R. Delfino
  • Simon V. Bekker
  • Jeffrey W. Cozzens
Clinical Study

Abstract

Purpose

Fluorescence-guided surgery (FGS) with the use of 5-aminolevulinic acid (5-ALA) leads to more extensive resection of high-grade glioma (HGG) and longer overall survival (OS) of patients compared to conventional resection. The purpose of this study is to investigate the effect of 5-ALA dosages on residual tumor volume (RTV) and OS in patients with glioblastoma.

Methods

A retrospective cohort study for patients who participated in a phase I and II dose-escalation clinical trial on 5-ALA for resection of HGG. A total of 25 patients were found to have newly diagnosed glioblastoma on histology and enrolled in our study. Patients receiving low doses of 5-ALA (10–30 mg/kg) (n = 6) were compared to those receiving high doses (40–50 mg/kg) (n = 19). Pre- and post-operative contrast enhanced T1W MRI were evaluated with volumetric analysis.

Results

Median RTV was 0.69 cm3 and 0.00 cm3 in the low and high dose groups respectively (p = 0.975). A gross total resection (GTR) was more likely in the high dose group, though this was not statistically significant. No significant difference was found in median OS between the high and low dose groups (p = 0.6787).

Conclusions

High doses of 5-ALA FGS are associated with less RTV and greater probability of GTR. 5-ALA dose was not associated with OS. Further studies with a larger patient cohort are warranted.

Keywords

5-ALA 5-Aminolevulinic acid Glioblastoma Volumetric analysis 

Notes

Funding

Funding for this work was received from the Memorial Medical Center Foundation, Springfield, Illinois.

Compliance with ethical standards

Conflict of interest

The authors have no personal or institutional conflicts of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

References

  1. 1.
    Stupp R, Hegi ME, Mason WP, van den Bent MJ, Taphoorn MJ, Janzer RC, Ludwin SK, Allgeier A, Fisher B, Belanger K, Hau P, Brandes AA, Gijtenbeek J, Marosi C, Vecht CJ, Mokhtari K, Wesseling P, Villa S, Eisenhauer E, Gorlia T, Weller M, Lacombe D, Cairncross JG, Mirimanoff RO, European Organisation for R, Treatment of Cancer Brain T, Radiation Oncology G, National Cancer Institute of Canada Clinical Trials G (2009) Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol 10: 459–466  https://doi.org/10.1016/S1470-2045(09)70025-7 CrossRefGoogle Scholar
  2. 2.
    Wen PY, Kesari S (2008) Malignant gliomas in adults. N Engl J Med 359:492–507.  https://doi.org/10.1056/NEJMra0708126 CrossRefGoogle Scholar
  3. 3.
    Berger MS (2011) Glioma surgery: a century of challenge. Clin Neurosurg 58:7–9CrossRefGoogle Scholar
  4. 4.
    Lacroix M, Abi-Said D, Fourney DR, Gokaslan ZL, Shi W, DeMonte F, Lang FF, McCutcheon IE, Hassenbusch SJ, Holland E, Hess K, Michael C, Miller D, Sawaya R (2001) A multivariate analysis of 416 patients with glioblastoma multiforme: prognosis, extent of resection, and survival. J Neurosurg 95:190–198.  https://doi.org/10.3171/jns.2001.95.2.0190 CrossRefGoogle Scholar
  5. 5.
    Sanai N, Berger MS (2008) Glioma extent of resection and its impact on patient outcome. Neurosurgery 62:753–764.  https://doi.org/10.1227/01.neu.0000318159.21731.cf. (discussion 264–756) CrossRefGoogle Scholar
  6. 6.
    Sanai N, Polley MY, McDermott MW, Parsa AT, Berger MS (2011) An extent of resection threshold for newly diagnosed glioblastomas. J Neurosurg 115:3–8.  https://doi.org/10.3171/2011.2.JNS10998 CrossRefGoogle Scholar
  7. 7.
    Stummer W, Reulen HJ, Meinel T, Pichlmeier U, Schumacher W, Tonn JC, Rohde V, Oppel F, Turowski B, Woiciechowsky C, Franz K, Pietsch T, Group AL-GS (2008) Extent of resection and survival in glioblastoma multiforme: identification of and adjustment for bias. Neurosurgery 62:564–576.  https://doi.org/10.1227/01.neu.0000317304.31579.17. (discussion 564–576) CrossRefGoogle Scholar
  8. 8.
    Grabowski MM, Recinos PF, Nowacki AS, Schroeder JL, Angelov L, Barnett GH, Vogelbaum MA (2014) Residual tumor volume versus extent of resection: predictors of survival after surgery for glioblastoma. J Neurosurg 121:1115–1123.  https://doi.org/10.3171/2014.7.JNS132449 CrossRefGoogle Scholar
  9. 9.
    Schucht P, Knittel S, Slotboom J, Seidel K, Murek M, Jilch A, Raabe A, Beck J (2014) 5-ALA complete resections go beyond MR contrast enhancement: shift corrected volumetric analysis of the extent of resection in surgery for glioblastoma. Acta Neurochir (Wien) 156:305–312.  https://doi.org/10.1007/s00701-013-1906-7. (discussion 312) CrossRefGoogle Scholar
  10. 10.
    Collaud S, Juzeniene A, Moan J, Lange N (2004) On the selectivity of 5-aminolevulinic acid-induced protoporphyrin IX formation. Curr Med Chem Anticancer Agents 4:301–316CrossRefGoogle Scholar
  11. 11.
    Stummer W, Pichlmeier U, Meinel T, Wiestler OD, Zanella F, Reulen HJ, Group AL-GS (2006) Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial. Lancet Oncol 7:392–401.  https://doi.org/10.1016/S1470-2045(06)70665-9 CrossRefGoogle Scholar
  12. 12.
    Aldave G, Tejada S, Pay E, Marigil M, Bejarano B, Idoate MA, Diez-Valle R (2013) Prognostic value of residual fluorescent tissue in glioblastoma patients after gross total resection in 5-aminolevulinic acid-guided surgery. Neurosurgery 72:915–920.  https://doi.org/10.1227/NEU.0b013e31828c3974. (discussion 920–911) CrossRefGoogle Scholar
  13. 13.
    Cozzens JW, Lokaitis BC, Moore BE, Amin DV, Espinosa JA, MacGregor M, Michael AP, Jones BA (2017) A phase 1 dose-escalation study of oral 5-aminolevulinic acid in adult patients undergoing resection of a newly diagnosed or recurrent high-grade glioma. Neurosurgery 81:46–55.  https://doi.org/10.1093/neuros/nyw182 CrossRefGoogle Scholar
  14. 14.
    Vogelbaum MA, Jost S, Aghi MK, Heimberger AB, Sampson JH, Wen PY, Macdonald DR, Van den Bent MJ, Chang SM (2012) Application of novel response/progression measures for surgically delivered therapies for gliomas: Response Assessment in Neuro-Oncology (RANO) working group. Neurosurgery 70:234–243.  https://doi.org/10.1227/NEU.0b013e318223f5a7. (discussion 243–234) CrossRefGoogle Scholar
  15. 15.
    Sawaya R, Hammoud M, Schoppa D, Hess KR, Wu SZ, Shi WM, Wildrick DM (1998) Neurosurgical outcomes in a modern series of 400 craniotomies for treatment of parenchymal tumors. Neurosurgery 42:1044–1055. (discussion 1055–1046) CrossRefGoogle Scholar
  16. 16.
    GmbH M (2008) Gliolan® user manualGoogle Scholar
  17. 17.
    Albert FK, Forsting M, Sartor K, Adams HP, Kunze S (1994) Early postoperative magnetic resonance imaging after resection of malignant glioma: objective evaluation of residual tumor and its influence on regrowth and prognosis. Neurosurgery 34:45–60. (discussion 60–41) Google Scholar
  18. 18.
    Elster AD, DiPersio DA (1990) Cranial postoperative site: assessment with contrast-enhanced MR imaging. Radiology 174:93–98.  https://doi.org/10.1148/radiology.174.1.2294578 CrossRefGoogle Scholar
  19. 19.
    Sinclair AG, Scoffings DJ (2010) Imaging of the post-operative cranium. Radiographics 30:461–482.  https://doi.org/10.1148/rg.302095115 CrossRefGoogle Scholar
  20. 20.
    Coburger J, Engelke J, Scheuerle A, Thal DR, Hlavac M, Wirtz CR, Konig R (2014) Tumor detection with 5-aminolevulinic acid fluorescence and Gd-DTPA-enhanced intraoperative MRI at the border of contrast-enhancing lesions: a prospective study based on histopathological assessment. Neurosurg Focus 36:E3.  https://doi.org/10.3171/2013.11.FOCUS13463 CrossRefGoogle Scholar
  21. 21.
    Jaber M, Wolfer J, Ewelt C, Holling M, Hasselblatt M, Niederstadt T, Zoubi T, Weckesser M, Stummer W (2016) The value of 5-aminolevulinic acid in low-grade gliomas and high-grade gliomas lacking glioblastoma imaging features: an analysis based on fluorescence, magnetic resonance imaging, 18F-fluoroethyl tyrosine positron emission tomography, and tumor molecular factors. Neurosurgery 78:401–411.  https://doi.org/10.1227/NEU.0000000000001020 CrossRefGoogle Scholar
  22. 22.
    Roessler K, Becherer A, Donat M, Cejna M, Zachenhofer I (2012) Intraoperative tissue fluorescence using 5-aminolevolinic acid (5-ALA) is more sensitive than contrast MRI or amino acid positron emission tomography ((18)F-FET PET) in glioblastoma surgery. Neurol Res 34:314–317.  https://doi.org/10.1179/1743132811Y.0000000078 CrossRefGoogle Scholar
  23. 23.
    Stummer W, Stepp H, Wiestler OD, Pichlmeier U (2017) Randomized, prospective double-blinded study comparing 3 different doses of 5-aminolevulinic acid for fluorescence-guided resections of malignant gliomas. Neurosurgery 81:230–239.  https://doi.org/10.1093/neuros/nyx074 CrossRefGoogle Scholar
  24. 24.
    McGirt MJ, Chaichana KL, Gathinji M, Attenello FJ, Than K, Olivi A, Weingart JD, Brem H, Quinones-Hinojosa AR (2009) Independent association of extent of resection with survival in patients with malignant brain astrocytoma. J Neurosurg 110:156–162.  https://doi.org/10.3171/2008.4.17536 CrossRefGoogle Scholar
  25. 25.
    Brown TJ, Brennan MC, Li M, Church EW, Brandmeir NJ, Rakszawski KL, Patel AS, Rizk EB, Suki D, Sawaya R, Glantz M (2016) Association of the extent of resection with survival in glioblastoma: a systematic review and meta-analysis. JAMA Oncol 2:1460–1469.  https://doi.org/10.1001/jamaoncol.2016.1373 CrossRefGoogle Scholar
  26. 26.
    Casartelli G, Dorcaratto A, Ravetti JL, Sola S, Vitali A, Merlo DF, Frosina G (2009) Survival of high grade glioma patients depends on their age at diagnosis. Cancer Biol Ther 8:1719–1721CrossRefGoogle Scholar
  27. 27.
    Hegi ME, Diserens AC, Gorlia T, Hamou MF, de Tribolet N, Weller M, Kros JM, Hainfellner JA, Mason W, Mariani L, Bromberg JE, Hau P, Mirimanoff RO, Cairncross JG, Janzer RC, Stupp R (2005) MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med 352:997–1003.  https://doi.org/10.1056/NEJMoa043331 CrossRefGoogle Scholar
  28. 28.
    Molenaar RJ, Verbaan D, Lamba S, Zanon C, Jeuken JW, Boots-Sprenger SH, Wesseling P, Hulsebos TJ, Troost D, van Tilborg AA, Leenstra S, Vandertop WP, Bardelli A, van Noorden CJ, Bleeker FE (2014) The combination of IDH1 mutations and MGMT methylation status predicts survival in glioblastoma better than either IDH1 or MGMT alone. Neuro Oncol 16:1263–1273.  https://doi.org/10.1093/neuonc/nou005 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Division of NeurosurgerySouthern Illinois University School of MedicineSpringfieldUSA
  2. 2.Department of RadiologySouthern Illinois University School of MedicineSpringfieldUSA
  3. 3.Center for Clinical ResearchSIU School of MedicineSpringfieldUSA
  4. 4.Department of RadiologySouthern Illinois University School of MedicineEast PeoriaUSA

Personalised recommendations