Advertisement

Journal of Neuro-Oncology

, Volume 141, Issue 3, pp 479–486 | Cite as

5-ALA and FDA approval for glioma surgery

  • Constantinos G. HadjipanayisEmail author
  • Walter Stummer
Topic Review

Abstract

The US Food and Drug Administration (FDA) approved 5-aminolevulinic acid (5-ALA; Gleolan®; photonamic GmbH and Co. KG) for use as an intraoperative optical imaging agent in patients with suspected high-grade gliomas (HGGs) in 2017. This was the first ever optical imaging agent approved as an adjunct for the visualization of malignant tissue during surgery for brain tumors. The approval occurred a decade after European approval and a multicenter, phase III randomized trial which confirmed that surgeons using 5-ALA fluorescence-guided surgery as a surgical adjunct could achieve more complete resections of tumors in HGG patients and better patient outcomes than with conventional microsurgery. Much of the delay in the US FDA approval of 5-ALA stemmed from its conceptualization as a therapeutic and not as an intraoperative imaging tool. We chronicle the challenges encountered during the US FDA approval process to highlight a new standard for approval of intraoperative optical imaging agents in brain tumors.

Keywords

5-ALA FDA Optical imaging Glioblastoma High-grade gliomas Intraoperative imaging Brain tumors Gliomas 

Notes

Acknowledgements

We acknowledge the great effort provided by a large number of individuals in academia, industry, patients, families, and the community who provided their strong support for 5-ALA approval in the US. We wish to especially acknowledge Dr. Alan Ezrin (CEO and President of NXDC) and his team (Dr. Joe Wyse, Linda Kearns, and Jeff Cooper) in addition to Drs. Ulrich Kosciessa, Anne Moor, and Markus Stocker (Photonamic GmbH and Co.) for their strong commitment and dedication to moving 5-ALA forward to FDA approval in the US. We also wish to acknowledge the Scilucent (Beth Silverstein, Cindy Fink, Alura Johnston, and Dipali MacAllister) and Pharmapprove (Len Baum, Lisa Peluso, and Lisa Starke) teams for their herculean efforts in preparing the core medical team for the MIDAC Meeting.

Funding

This study did not receive any funding.

Compliance with ethical standards

Conflict of interest

Constantinos Hadjipanayis is a Consultant for NXDC and Synaptive Medical, Inc. He will receive royalties from NXDC. He has also received speaker fees by Carl Zeiss and Leica. Walter Stummer has received speaker and consultant fees by Carl Zeiss, Leica, Photonamic, Medac, and NXDC.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. 1.
    Lakomkin N, Hadjipanayis CG (2018) Fluorescence-guided surgery for high-grade gliomas. J Surg Oncol 118:356–361.  https://doi.org/10.1002/jso.25154 CrossRefGoogle Scholar
  2. 2.
    Stummer W, Stocker S, Wagner S, Stepp H, Fritsch C, Goetz C, Goetz AE, Kiefmann R, Reulen HJ (1998) Intraoperative detection of malignant gliomas by 5-aminolevulinic acid-induced porphyrin fluorescence. Neurosurgery 42:518–525; discussion 525–516Google Scholar
  3. 3.
    Stummer W, Novotny A, Stepp H, Goetz C, Bise K, Reulen HJ (2000) Fluorescence-guided resection of glioblastoma multiforme by using 5-aminolevulinic acid-induced porphyrins: a prospective study in 52 consecutive patients. J Neurosurg 93:1003–1013.  https://doi.org/10.3171/jns.2000.93.6.1003 CrossRefGoogle Scholar
  4. 4.
    Parney IF, Chang SM (2003) Current chemotherapy for glioblastoma. Cancer J 9:149–156CrossRefGoogle Scholar
  5. 5.
    Walker MD, Alexander E Jr, Hunt WE, MacCarty CS, Mahaley MS Jr, Mealey J Jr, Norrell HA, Owens G, Ransohoff J, Wilson CB, Gehan EA, Strike TA (1978) Evaluation of BCNU and/or radiotherapy in the treatment of anaplastic gliomas. A cooperative clinical trial. J Neurosurg 49:333–343.  https://doi.org/10.3171/jns.1978.49.3.0333 CrossRefGoogle Scholar
  6. 6.
    Brem H, Piantadosi S, Burger PC, Walker M, Selker R, Vick NA, Black K, Sisti M, Brem S, Mohr G et al (1995) Placebo-controlled trial of safety and efficacy of intraoperative controlled delivery by biodegradable polymers of chemotherapy for recurrent gliomas. The Polymer-Brain Tumor Treatment Group. Lancet 345:1008–1012CrossRefGoogle Scholar
  7. 7.
    Valtonen S, Timonen U, Toivanen P, Kalimo H, Kivipelto L, Heiskanen O, Unsgaard G, Kuurne T (1997) Interstitial chemotherapy with carmustine-loaded polymers for high-grade gliomas: a randomized double-blind study. Neurosurgery 41:44–48; discussion 48–49Google Scholar
  8. 8.
    Westphal M, Hilt DC, Bortey E, Delavault P, Olivares R, Warnke PC, Whittle IR, Jaaskelainen J, Ram Z (2003) A phase 3 trial of local chemotherapy with biodegradable carmustine (BCNU) wafers (Gliadel wafers) in patients with primary malignant glioma. Neurooncology 5:79–88.  https://doi.org/10.1093/neuonc/5.2.79 Google Scholar
  9. 9.
    Newlands ES, Stevens MF, Wedge SR, Wheelhouse RT, Brock C (1997) Temozolomide: a review of its discovery, chemical properties, pre-clinical development and clinical trials. Cancer Treat Rev 23:35–61CrossRefGoogle Scholar
  10. 10.
    Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, Belanger K, Brandes AA, Marosi C, Bogdahn U, Curschmann J, Janzer RC, Ludwin SK, Gorlia T, Allgeier A, Lacombe D, Cairncross JG, Eisenhauer E, Mirimanoff RO, European Organisation for Research and Treatment of Cancer Brain Tumor and Radiotherapy Groups, National Cancer Institute of Canada Clinical Trials Group (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352: 987–996  https://doi.org/10.1056/NEJMoa043330 CrossRefGoogle Scholar
  11. 11.
    Hegi ME, Diserens AC, Gorlia T, Hamou MF, de Tribolet N, Weller M, Kros JM, Hainfellner JA, Mason W, Mariani L, Bromberg JE, Hau P, Mirimanoff RO, Cairncross JG, Janzer RC, Stupp R (2005) MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med 352:997–1003.  https://doi.org/10.1056/NEJMoa043331 CrossRefGoogle Scholar
  12. 12.
    Cohen MH, Shen YL, Keegan P, Pazdur R (2009) FDA drug approval summary: bevacizumab (Avastin) as treatment of recurrent glioblastoma multiforme. Oncologist 14:1131–1138.  https://doi.org/10.1634/theoncologist.2009-0121 CrossRefGoogle Scholar
  13. 13.
    Vredenburgh JJ, Desjardins A, Herndon JE II, Marcello J, Reardon DA, Quinn JA, Rich JN, Sathornsumetee S, Gururangan S, Sampson J, Wagner M, Bailey L, Bigner DD, Friedman AH, Friedman HS (2007) Bevacizumab plus irinotecan in recurrent glioblastoma multiforme. J Clin Oncol 25:4722–4729.  https://doi.org/10.1200/JCO.2007.12.2440 CrossRefGoogle Scholar
  14. 14.
    Bokstein F, Shpigel S, Blumenthal DT (2008) Treatment with bevacizumab and irinotecan for recurrent high-grade glial tumors. Cancer 112:2267–2273.  https://doi.org/10.1002/cncr.23401 CrossRefGoogle Scholar
  15. 15.
    Stupp R, Wong ET, Kanner AA, Steinberg D, Engelhard H, Heidecke V, Kirson ED, Taillibert S, Liebermann F, Dbaly V, Ram Z, Villano JL, Rainov N, Weinberg U, Schiff D, Kunschner L, Raizer J, Honnorat J, Sloan A, Malkin M, Landolfi JC, Payer F, Mehdorn M, Weil RJ, Pannullo SC, Westphal M, Smrcka M, Chin L, Kostron H, Hofer S, Bruce J, Cosgrove R, Paleologous N, Palti Y, Gutin PH (2012) NovoTTF-100A versus physician’s choice chemotherapy in recurrent glioblastoma: a randomised phase III trial of a novel treatment modality. Eur J Cancer 48:2192–2202.  https://doi.org/10.1016/j.ejca.2012.04.011 CrossRefGoogle Scholar
  16. 16.
    Stupp R, Taillibert S, Kanner AA, Kesari S, Steinberg DM, Toms SA, Taylor LP, Lieberman F, Silvani A, Fink KL, Barnett GH, Zhu JJ, Henson JW, Engelhard HH, Chen TC, Tran DD, Sroubek J, Tran ND, Hottinger AF, Landolfi J, Desai R, Caroli M, Kew Y, Honnorat J, Idbaih A, Kirson ED, Weinberg U, Palti Y, Hegi ME, Ram Z (2015) Maintenance therapy with tumor-treating fields plus temozolomide vs temozolomide alone for glioblastoma: a randomized clinical trial. JAMA 314:2535–2543.  https://doi.org/10.1001/jama.2015.16669 CrossRefGoogle Scholar
  17. 17.
    Stupp R, Taillibert S, Kanner A, Read W, Steinberg D, Lhermitte B, Toms S, Idbaih A, Ahluwalia MS, Fink K, Di Meco F, Lieberman F, Zhu JJ, Stragliotto G, Tran D, Brem S, Hottinger A, Kirson ED, Lavy-Shahaf G, Weinberg U, Kim CY, Paek SH, Nicholas G, Bruna J, Hirte H, Weller M, Palti Y, Hegi ME, Ram Z (2017) Effect of tumor-treating fields plus maintenance temozolomide vs maintenance temozolomide alone on survival in patients with glioblastoma: a randomized clinical trial. JAMA 318:2306–2316.  https://doi.org/10.1001/jama.2017.18718 CrossRefGoogle Scholar
  18. 18.
    Taphoorn MJB, Dirven L, Kanner AA, Lavy-Shahaf G, Weinberg U, Taillibert S, Toms SA, Honnorat J, Chen TC, Sroubek J, David C, Idbaih A, Easaw JC, Kim CY, Bruna J, Hottinger AF, Kew Y, Roth P, Desai R, Villano JL, Kirson ED, Ram Z, Stupp R (2018) Influence of treatment with tumor-treating fields on health-related quality of life of patients with newly diagnosed glioblastoma: a secondary analysis of a randomized clinical trial. JAMA Oncol 4:495–504.  https://doi.org/10.1001/jamaoncol.2017.5082 CrossRefGoogle Scholar
  19. 19.
    Stummer W, Pichlmeier U, Meinel T, Wiestler OD, Zanella F, Reulen HJ, AL-GS Group (2006) Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial. Lancet Oncol 7:392–401.  https://doi.org/10.1016/S1470-2045(06)70665-9 CrossRefGoogle Scholar
  20. 20.
    Stummer W, Tonn JC, Mehdorn HM, Nestler U, Franz K, Goetz C, Bink A, Pichlmeier U, AL-GS Group (2011) Counterbalancing risks and gains from extended resections in malignant glioma surgery: a supplemental analysis from the randomized 5-aminolevulinic acid glioma resection study. Clinical article. J Neurosurg 114:613–623.  https://doi.org/10.3171/2010.3.JNS097 CrossRefGoogle Scholar
  21. 21.
    Administration USFaD (2006) FDA workshop brain cancer end-pointsGoogle Scholar
  22. 22.
    Alexander BM, Cloughesy TF (2017) Adult glioblastoma. J Clin Oncol 35:2402–2409.  https://doi.org/10.1200/JCO.2017.73.0119 CrossRefGoogle Scholar
  23. 23.
    Chiu L, Chiu N, Zeng L, Zhang L, Popovic M, Chow R, Lam H, Poon M, Chow E (2012) Quality of life in patients with primary and metastatic brain cancer as reported in the literature using the EORTC QLQ-BN20 and QLQ-C30. Expert Rev Pharmacoecon Outcomes Res 12:831–837.  https://doi.org/10.1586/erp.12.70 CrossRefGoogle Scholar
  24. 24.
    Archibald YM, Lunn D, Ruttan LA, Macdonald DR, Del Maestro RF, Barr HW, Pexman JH, Fisher BJ, Gaspar LE, Cairncross JG (1994) Cognitive functioning in long-term survivors of high-grade glioma. J Neurosurg 80:247–253.  https://doi.org/10.3171/jns.1994.80.2.0247 CrossRefGoogle Scholar
  25. 25.
    Meyers CA, Rock EP, Fine HA (2012) Refining endpoints in brain tumor clinical trials. J Neurooncol 108:227–230.  https://doi.org/10.1007/s11060-012-0813-8 CrossRefGoogle Scholar
  26. 26.
    Armstrong TS, Wefel JS, Wang M, Gilbert MR, Won M, Bottomley A, Mendoza TR, Coens C, Werner-Wasik M, Brachman DG, Choucair AK, Mehta M (2013) Net clinical benefit analysis of Radiation Therapy Oncology Group 0525: a phase III trial comparing conventional adjuvant temozolomide with dose-intensive temozolomide in patients with newly diagnosed glioblastoma. J Clin Oncol 31:4076–4084.  https://doi.org/10.1200/JCO.2013.49.6067 CrossRefGoogle Scholar
  27. 27.
    Armstrong TS (2013) Measuring clinical benefit: use of patient-reported outcomes (PRO) in primary brain tumor clinical trials. Curr Oncol Rep 15:27–32.  https://doi.org/10.1007/s11912-012-0276-2 CrossRefGoogle Scholar
  28. 28.
    Gilbert MR, Wang M, Aldape KD, Stupp R, Hegi ME, Jaeckle KA, Armstrong TS, Wefel JS, Won M, Blumenthal DT, Mahajan A, Schultz CJ, Erridge S, Baumert B, Hopkins KI, Tzuk-Shina T, Brown PD, Chakravarti A, Curran WJ Jr, Mehta MP (2013) Dose-dense temozolomide for newly diagnosed glioblastoma: a randomized phase III clinical trial. J Clin Oncol 31:4085–4091.  https://doi.org/10.1200/JCO.2013.49.6968 CrossRefGoogle Scholar
  29. 29.
    Gilbert MR, Dignam JJ, Armstrong TS, Wefel JS, Blumenthal DT, Vogelbaum MA, Colman H, Chakravarti A, Pugh S, Won M, Jeraj R, Brown PD, Jaeckle KA, Schiff D, Stieber VW, Brachman DG, Werner-Wasik M, Tremont-Lukats IW, Sulman EP, Aldape KD, Curran WJ Jr, Mehta MP (2014) A randomized trial of bevacizumab for newly diagnosed glioblastoma. N Engl J Med 370:699–708.  https://doi.org/10.1056/NEJMoa1308573 CrossRefGoogle Scholar
  30. 30.
    Lacroix M, Abi-Said D, Fourney DR, Gokaslan ZL, Shi W, DeMonte F, Lang FF, McCutcheon IE, Hassenbusch SJ, Holland E, Hess K, Michael C, Miller D, Sawaya R (2001) A multivariate analysis of 416 patients with glioblastoma multiforme: prognosis, extent of resection, and survival. J Neurosurg 95:190–198.  https://doi.org/10.3171/jns.2001.95.2.0190 CrossRefGoogle Scholar
  31. 31.
    Sanai N, Polley MY, McDermott MW, Parsa AT, Berger MS (2011) An extent of resection threshold for newly diagnosed glioblastomas. J Neurosurg 115:3–8.  https://doi.org/10.3171/2011.2.JNS10998 CrossRefGoogle Scholar
  32. 32.
    Li YM, Suki D, Hess K, Sawaya R (2016) The influence of maximum safe resection of glioblastoma on survival in 1229 patients: can we do better than gross-total resection? J Neurosurg 124:977–988.  https://doi.org/10.3171/2015.5.JNS142087 CrossRefGoogle Scholar
  33. 33.
    Kuhnt D, Becker A, Ganslandt O, Bauer M, Buchfelder M, Nimsky C (2011) Correlation of the extent of tumor volume resection and patient survival in surgery of glioblastoma multiforme with high-field intraoperative MRI guidance. Neurooncology 13:1339–1348.  https://doi.org/10.1093/neuonc/nor133 Google Scholar
  34. 34.
    Vuorinen V, Hinkka S, Farkkila M, Jaaskelainen J (2003) Debulking or biopsy of malignant glioma in elderly people—a randomised study. Acta Neurochir (Wien) 145:5–10.  https://doi.org/10.1007/s00701-002-1030-6 CrossRefGoogle Scholar
  35. 35.
    Stummer W, Meinel T, Ewelt C, Martus P, Jakobs O, Felsberg J, Reifenberger G (2012) Prospective cohort study of radiotherapy with concomitant and adjuvant temozolomide chemotherapy for glioblastoma patients with no or minimal residual enhancing tumor load after surgery. J Neurooncol 108:89–97.  https://doi.org/10.1007/s11060-012-0798-3 CrossRefGoogle Scholar
  36. 36.
    Brown TJ, Brennan MC, Li M, Church EW, Brandmeir NJ, Rakszawski KL, Patel AS, Rizk EB, Suki D, Sawaya R, Glantz M (2016) Association of the extent of resection with survival in glioblastoma: a systematic review and meta-analysis. JAMA Oncol 2:1460–1469.  https://doi.org/10.1001/jamaoncol.2016.1373 CrossRefGoogle Scholar
  37. 37.
    Orringer D, Lau D, Khatri S, Zamora-Berridi GJ, Zhang K, Wu C, Chaudhary N, Sagher O (2012) Extent of resection in patients with glioblastoma: limiting factors, perception of resectability, and effect on survival. J Neurosurg 117:851–859.  https://doi.org/10.3171/2012.8.JNS12234 CrossRefGoogle Scholar
  38. 38.
    McGirt MJ, Chaichana KL, Gathinji M, Attenello FJ, Than K, Olivi A, Weingart JD, Brem H, Quinones-Hinojosa AR (2009) Independent association of extent of resection with survival in patients with malignant brain astrocytoma. J Neurosurg 110:156–162.  https://doi.org/10.3171/2008.4.17536 CrossRefGoogle Scholar
  39. 39.
    Cordova JS, Schreibmann E, Hadjipanayis CG, Guo Y, Shu HK, Shim H, Holder CA (2014) Quantitative tumor segmentation for evaluation of extent of glioblastoma resection to facilitate multisite clinical trials. Transl Oncol 7:40–47CrossRefGoogle Scholar
  40. 40.
    Cordova JS, Gurbani SS, Holder CA, Olson JJ, Schreibmann E, Shi R, Guo Y, Shu HK, Shim H, Hadjipanayis CG (2016) Semi-automated volumetric and morphological assessment of glioblastoma resection with fluorescence-guided surgery. Mol Imaging Biol 18:454–462.  https://doi.org/10.1007/s11307-015-0900-2 CrossRefGoogle Scholar
  41. 41.
    Cordova JS, Shu HK, Liang Z, Gurbani SS, Cooper LA, Holder CA, Olson JJ, Kairdolf B, Schreibmann E, Neill SG, Hadjipanayis CG, Shim H (2016) Whole-brain spectroscopic MRI biomarkers identify infiltrating margins in glioblastoma patients. Neurooncology 18:1180–1189.  https://doi.org/10.1093/neuonc/now036 Google Scholar
  42. 42.
    Daniltchenko DI, Riedl CR, Sachs MD, Koenig F, Daha KL, Pflueger H, Loening SA, Schnorr D (2005) Long-term benefit of 5-aminolevulinic acid fluorescence assisted transurethral resection of superficial bladder cancer: 5-year results of a prospective randomized study. J Urol 174:2129–2133; discussion 2133.  https://doi.org/10.1097/01.ju.0000181814.73466.14
  43. 43.
    Hadjipanayis CG, Widhalm G, Stummer W (2015) What is the surgical benefit of utilizing 5-aminolevulinic acid for fluorescence-guided surgery of malignant gliomas? Neurosurgery 77:663–673.  https://doi.org/10.1227/NEU.0000000000000929 CrossRefGoogle Scholar
  44. 44.
    Zhao S, Wu J, Wang C, Liu H, Dong X, Shi C, Shi C, Liu Y, Teng L, Han D, Chen X, Yang G, Wang L, Shen C, Li H (2013) Intraoperative fluorescence-guided resection of high-grade malignant gliomas using 5-aminolevulinic acid-induced porphyrins: a systematic review and meta-analysis of prospective studies. PLoS ONE 8:e63682.  https://doi.org/10.1371/journal.pone.0063682 CrossRefGoogle Scholar
  45. 45.
    Roberts DW, Valdes PA, Harris BT, Fontaine KM, Hartov A, Fan X, Ji S, Lollis SS, Pogue BW, Leblond F, Tosteson TD, Wilson BC, Paulsen KD (2011) Coregistered fluorescence-enhanced tumor resection of malignant glioma: relationships between delta-aminolevulinic acid-induced protoporphyrin IX fluorescence, magnetic resonance imaging enhancement, and neuropathological parameters. Clinical article. J Neurosurg 114:595–603.  https://doi.org/10.3171/2010.2.JNS091322 CrossRefGoogle Scholar
  46. 46.
    Coburger J, Engelke J, Scheuerle A, Thal DR, Hlavac M, Wirtz CR, Konig R (2014) Tumor detection with 5-aminolevulinic acid fluorescence and Gd-DTPA-enhanced intraoperative MRI at the border of contrast-enhancing lesions: a prospective study based on histopathological assessment. Neurosurg Focus 36:E3.  https://doi.org/10.3171/2013.11.FOCUS13463 CrossRefGoogle Scholar
  47. 47.
    Diez Valle R, Tejada Solis S, Idoate Gastearena MA, Garcia de Eulate R, Dominguez Echavarri P, Aristu Mendiroz J (2011) Surgery guided by 5-aminolevulinic fluorescence in glioblastoma: volumetric analysis of extent of resection in single-center experience. J Neurooncol 102:105–113.  https://doi.org/10.1007/s11060-010-0296-4 CrossRefGoogle Scholar
  48. 48.
    Nabavi A, Thurm H, Zountsas B, Pietsch T, Lanfermann H, Pichlmeier U, Mehdorn M, ALARGS Group (2009) Five-aminolevulinic acid for fluorescence-guided resection of recurrent malignant gliomas: a phase II study. Neurosurgery 65:1070–1076; discussion 1076–1077.  https://doi.org/10.1227/01.NEU.0000360128.03597.C7
  49. 49.
    Hefti M, von Campe G, Moschopulos M, Siegner A, Looser H, Landolt H (2008) 5-Aminolevulinic acid induced protoporphyrin IX fluorescence in high-grade glioma surgery: a one-year experience at a single institution. Swiss Med Wkly 138:180–185Google Scholar
  50. 50.
    Stummer W, Tonn JC, Goetz C, Ullrich W, Stepp H, Bink A, Pietsch T, Pichlmeier U (2014) 5-Aminolevulinic acid-derived tumor fluorescence: the diagnostic accuracy of visible fluorescence qualities as corroborated by spectrometry and histology and postoperative imaging. Neurosurgery 74:310–319; discussion 319–320.  https://doi.org/10.1227/NEU.0000000000000267
  51. 51.
    Lau D, Hervey-Jumper SL, Chang S, Molinaro AM, McDermott MW, Phillips JJ, Berger MS (2016) A prospective Phase II clinical trial of 5-aminolevulinic acid to assess the correlation of intraoperative fluorescence intensity and degree of histologic cellularity during resection of high-grade gliomas. J Neurosurg 124:1300–1309.  https://doi.org/10.3171/2015.5.JNS1577 CrossRefGoogle Scholar
  52. 52.
    Idoate MA, Diez Valle R, Echeveste J, Tejada S (2011) Pathological characterization of the glioblastoma border as shown during surgery using 5-aminolevulinic acid-induced fluorescence. Neuropathology 31:575–582.  https://doi.org/10.1111/j.1440-1789.2011.01202.x CrossRefGoogle Scholar
  53. 53.
    Valdes PA, Fan X, Ji S, Harris BT, Paulsen KD, Roberts DW (2010) Estimation of brain deformation for volumetric image updating in protoporphyrin IX fluorescence-guided resection. Stereotact Funct Neurosurg 88:1–10.  https://doi.org/10.1159/000258143 CrossRefGoogle Scholar
  54. 54.
    Kelly PJ, Daumas-Duport C, Kispert DB, Kall BA, Scheithauer BW, Illig JJ (1987) Imaging-based stereotaxic serial biopsies in untreated intracranial glial neoplasms. J Neurosurg 66:865–874.  https://doi.org/10.3171/jns.1987.66.6.0865 CrossRefGoogle Scholar
  55. 55.
    Dandy WE (1928) Removal of right cerebral hemisphere for certain tumors with hemiplegia. JAMA 90:823–825CrossRefGoogle Scholar
  56. 56.
    Han K, Ren M, Wick W, Abrey L, Das A, Jin J, Reardon DA (2014) Progression-free survival as a surrogate endpoint for overall survival in glioblastoma: a literature-based meta-analysis from 91 trials. Neurooncology 16:696–706.  https://doi.org/10.1093/neuonc/not236 Google Scholar
  57. 57.
    Tummers WS, Warram JM, Tipirneni KE, Fengler J, Jacobs P, Shankar L, Henderson L, Ballard B, Pogue BW, Weichert JP, Bouvet M, Sorger J, Contag CH, Frangioni JV, Tweedle MF, Basilion JP, Gambhir SS, Rosenthal EL (2017) Regulatory aspects of optical methods and exogenous targets for cancer detection. Cancer Res 77:2197–2206.  https://doi.org/10.1158/0008-5472.CAN-16-3217 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Icahn School of Medicine at Mount SinaiNew YorkUSA
  2. 2.Department of NeurosurgeryMount Sinai Beth IsraelNew YorkUSA
  3. 3.Department of NeurosurgeryUniversitätsklinikum MünsterMünsterGermany

Personalised recommendations