Advertisement

The added prognostic value of radiological phenotype combined with clinical features and molecular subtype in anaplastic gliomas

  • Minsu Lee
  • Kyunghwa Han
  • Sung Soo Ahn
  • Sohi Bae
  • Yoon Seong Choi
  • Je Beom Hong
  • Jong Hee Chang
  • Se Hoon Kim
  • Seung-Koo Lee
Clinical Study

Abstract

Purpose

To determine whether radiological phenotype can improve the predictive performance of the risk model based on molecular subtype and clinical risk factors in anaplastic glioma patients.

Methods

This retrospective study was approved by our institutional review board with waiver of informed consent. MR images of 86 patients with pathologically diagnosed anaplastic glioma (WHO grade III) between January 2007 and February 2016 were analyzed according to the Visually Accessible Rembrandt Images (VASARI) features set. Significant imaging findings were selected to generate a radiological risk score (RRS) for overall survival (OS) and progression-free survival (PFS) using the least absolute shrinkage and selection operator (LASSO) Cox regression model. The prognostic value of RRS was evaluated with multivariate Cox regression including molecular subtype and clinical risk factors. The C-indices of multivariate models with and without RRS were compared by bootstrapping.

Results

Eight VASARI features contributed to RRS for OS and six contributed to PFS. Multifocality or multicentricity was the most influential feature, followed by restricted diffusion. RRS was significantly associated with OS and PFS (P < .001), as well as age and molecular subtype. The multivariate model with RRS demonstrated a significantly higher predictive performance than the model without (C-index difference: 0.074, 95% confidence interval [CI]: 0.031, 0.148 for OS; C-index difference: 0.054, 95% CI: 0.014, 0.123 for PFS).

Conclusion

RRS derived from VASARI features was an independent predictor of survival in patients with anaplastic gliomas. The addition of RRS significantly improved the predictive performance of the molecular feature based model.

Keywords

Anaplastic glioma Imaging biomarker LASSO VASARI Molecular subtype IDH mutation 

Abbreviations

IDH

Isocitrate dehydrogenase

WHO

World health organization

VASARI

Visually Accesable rembrandt images

RRS

Radiologic risk score

OS

Overall survival

PFS

Progression-free survival

LASSO

Least absolute shrinkage and selection operator

Notes

Funding

This study was funded from the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (Grant No. 2017R1D1A1B03030440) and the faculty research grants of the Yonsei University College of Medicine (Grant No. 6-2015-0079).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    DeAngelis LM (2009) Anaplastic glioma: how to prognosticate outcome and choose a treatment strategy. [corrected]. J Clin Oncol 27:5861–5862.  https://doi.org/10.1200/JCO.2009.24.5985 CrossRefGoogle Scholar
  2. 2.
    Rhun EL, Taillibert S, Chamberlain MC (2015) The future of high-grade glioma: Where we are and where are we going. Surg Neurol Int 6:S9–S44.  https://doi.org/10.4103/2152-7806.151331 Google Scholar
  3. 3.
    Wick W, Hartmann C, Engel C et al (2009) NOA-04 randomized phase III trial of sequential radiochemotherapy of anaplastic glioma with procarbazine, lomustine, and vincristine or temozolomide. J Clin Oncol 27:5874–5880.  https://doi.org/10.1200/jco.2009.23.6497 CrossRefGoogle Scholar
  4. 4.
    Nuno M, Birch K, Mukherjee D, Sarmiento JM, Black KL, Patil CG (2013) Survival and prognostic factors of anaplastic gliomas. Neurosurgery 73:458–465.  https://doi.org/10.1227/01.neu.0000431477.02408.5e quiz 465.CrossRefGoogle Scholar
  5. 5.
    Yan H, Parsons DW, Jin G et al (2009) IDH1 and IDH2 mutations in gliomas. N Engl J Med 360:765–773.  https://doi.org/10.1056/NEJMoa0808710 CrossRefGoogle Scholar
  6. 6.
    Cairncross G, Wang M, Shaw E et al (2013) Phase III trial of chemoradiotherapy for anaplastic oligodendroglioma: long-term results of RTOG 9402. J Clin Oncol 31:337–343.  https://doi.org/10.1200/jco.2012.43.2674 CrossRefGoogle Scholar
  7. 7.
    van den Bent MJ, Brandes AA, Taphoorn MJ et al (2013) Adjuvant procarbazine, lomustine, and vincristine chemotherapy in newly diagnosed anaplastic oligodendroglioma: long-term follow-up of EORTC brain tumor group study 26951. J Clin Oncol 31:344–350.  https://doi.org/10.1200/JCO.2012.43.2229 CrossRefGoogle Scholar
  8. 8.
    Cancer Genome Atlas Research N, Brat DJ, Verhaak RG et al (2015) Comprehensive, integrative genomic analysis of diffuse lower-grade gliomas. N Engl J Med 372:2481–2498.  https://doi.org/10.1056/NEJMoa1402121 CrossRefGoogle Scholar
  9. 9.
    Louis DN, Perry A, Reifenberger G et al (2016) The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol 131:803–820.  https://doi.org/10.1007/s00401-016-1545-1 CrossRefGoogle Scholar
  10. 10.
    Pope WB, Sayre J, Perlina A, Villablanca JP, Mischel PS, Cloughesy TF (2005) MR imaging correlates of survival in patients with high-grade gliomas. AJNR Am J Neuroradiol 26:2466–2474Google Scholar
  11. 11.
    Wang Y, Wang K, Wang J et al (2016) Identifying the association between contrast enhancement pattern, surgical resection, and prognosis in anaplastic glioma patients. Neuroradiology 58:367–374.  https://doi.org/10.1007/s00234-016-1640-y CrossRefGoogle Scholar
  12. 12.
    Gutman DA, Cooper LA, Hwang SN et al (2013) MR imaging predictors of molecular profile and survival: multi-institutional study of the TCGA glioblastoma data set. Radiology 267:560–569.  https://doi.org/10.1148/radiol.13120118 CrossRefGoogle Scholar
  13. 13.
    Mazurowski MA, Desjardins A, Malof JM (2013) Imaging descriptors improve the predictive power of survival models for glioblastoma patients. Neuro Oncol 15:1389–1394.  https://doi.org/10.1093/neuonc/nos335 CrossRefGoogle Scholar
  14. 14.
    Jain R, Poisson LM, Gutman D et al (2014) Outcome prediction in patients with glioblastoma by using imaging, clinical, and genomic biomarkers: focus on the nonenhancing component of the tumor. Radiology 272:484–493.  https://doi.org/10.1148/radiol.14131691 CrossRefGoogle Scholar
  15. 15.
    Wangaryattawanich P, Hatami M, Wang J et al (2015) Multicenter imaging outcomes study of The Cancer Genome Atlas glioblastoma patient cohort: imaging predictors of overall and progression-free survival. Neuro Oncol 17:1525–1537.  https://doi.org/10.1093/neuonc/nov117 CrossRefGoogle Scholar
  16. 16.
    Zhou H, Vallieres M, Bai HX et al (2017) MRI features predict survival and molecular markers in diffuse lower-grade gliomas. Neuro Oncol.  https://doi.org/10.1093/neuonc/now256 Google Scholar
  17. 17.
    Takano S, Tian W, Matsuda M et al (2011) Detection of IDH1 mutation in human gliomas: comparison of immunohistochemistry and sequencing. Brain Tumor Pathol 28:115–123CrossRefGoogle Scholar
  18. 18.
    Riemenschneider MJ, Jeuken JW, Wesseling P, Reifenberger G (2010) Molecular diagnostics of gliomas: state of the art. Acta Neuropathol 120:567–584CrossRefGoogle Scholar
  19. 19.
    Wen PY, Macdonald DR, Reardon DA et al (2010) Updated response assessment criteria for high-grade gliomas: response assessment in neuro-oncology working group. J Clin Oncol 28:1963–1972.  https://doi.org/10.1200/JCO.2009.26.3541 CrossRefGoogle Scholar
  20. 20.
    Contal C, O’Quigley J (1999) An application of changepoint methods in studying the effect of age on survival in breast cancer. Comput Stat Data Anal 30:253–270.  https://doi.org/10.1016/S0167-9473(98)00096-6 CrossRefGoogle Scholar
  21. 21.
    Patil CG, Yi A, Elramsisy A et al (2012) Prognosis of patients with multifocal glioblastoma: a case-control study. J Neurosurg 117:705–711.  https://doi.org/10.3171/2012.7.JNS12147 CrossRefGoogle Scholar
  22. 22.
    Hassaneen W, Levine NB, Suki D et al (2011) Multiple craniotomies in the management of multifocal and multicentric glioblastoma. Clinical article. J Neurosurg 114:576–584.  https://doi.org/10.3171/2010.6.JNS091326 CrossRefGoogle Scholar
  23. 23.
    Sugahara T, Korogi Y, Kochi M et al (1999) Usefulness of diffusion-weighted MRI with echo-planar technique in the evaluation of cellularity in gliomas. J Magn Reson Imaging 9:53–60CrossRefGoogle Scholar
  24. 24.
    Higano S, Yun X, Kumabe T et al (2006) Malignant astrocytic tumors: clinical importance of apparent diffusion coefficient in prediction of grade and prognosis. Radiology 241:839–846.  https://doi.org/10.1148/radiol.2413051276 CrossRefGoogle Scholar
  25. 25.
    Murakami R, Sugahara T, Nakamura H et al (2007) Malignant supratentorial astrocytoma treated with postoperative radiation therapy: prognostic value of pretreatment quantitative diffusion-weighted MR imaging. Radiology 243:493–499.  https://doi.org/10.1148/radiol.2432060450 CrossRefGoogle Scholar
  26. 26.
    Sanai N, Alvarez-Buylla A, Berger MS (2005) Neural stem cells and the origin of gliomas. N Engl J Med 353:811–822.  https://doi.org/10.1056/NEJMra043666 CrossRefGoogle Scholar
  27. 27.
    Young GS, Macklin EA, Setayesh K et al (2011) Longitudinal MRI evidence for decreased survival among periventricular glioblastoma. Journal of Neuro-Oncology 104:261–269.  https://doi.org/10.1007/s11060-010-0477-1 CrossRefGoogle Scholar
  28. 28.
    Jafri NF, Clarke JL, Weinberg V, Barani IJ, Cha S (2013) Relationship of glioblastoma multiforme to the subventricular zone is associated with survival. Neuro Oncol 15:91–96.  https://doi.org/10.1093/neuonc/nos268 CrossRefGoogle Scholar
  29. 29.
    Liu S, Wang Y, Fan X, Ma J, Qiu X, Jiang T (2017) Association of MRI-classified subventricular regions with survival outcomes in patients with anaplastic glioma. Clin Radiol 72:426 e421-426 e426.  https://doi.org/10.1016/j.crad.2016.11.013 CrossRefGoogle Scholar
  30. 30.
    Chaichana KL, Kosztowski T, Niranjan A et al (2010) Prognostic significance of contrast-enhancing anaplastic astrocytomas in adults. J Neurosurg 113(2):286–292.  https://doi.org/10.3171/2010.2.Jns091010 CrossRefGoogle Scholar
  31. 31.
    Moulding HD, Friedman DP, Curtis M et al (2008) Revisiting anaplastic astrocytomas I: an expansive growth pattern is associated with a better prognosis. J Magn Reson Imaging 28(6):1311–1321.  https://doi.org/10.1002/jmri.21593 CrossRefGoogle Scholar
  32. 32.
    Park YW, Han K, Ahn SS et al (2018) Prediction of IDH1-mutation and 1p/19q-codeletion status using preoperative MR Imaging phenotypes in lower grade gliomas. Am J Neuroradiol 39(1):37–42.  https://doi.org/10.3174/ajnr.A5421 CrossRefGoogle Scholar
  33. 33.
    Visani M, Acquaviva G, Marucci G et al (2017) Non-canonical IDH1 and IDH2 mutations: a clonal and relevant event in an Italian cohort of gliomas classified according to the 2016 World health organization (WHO) criteria. J Neurooncol 135(2):245–254.  https://doi.org/10.1007/s11060-017-2571-0 CrossRefGoogle Scholar
  34. 34.
    Chen N, Yu T, Gong J et al (2016) IDH1/2 gene hotspot mutations in central nervous system tumours: analysis of 922 Chinese patients. Pathology 48:675–683.  https://doi.org/10.1016/j.pathol.2016.07.010 CrossRefGoogle Scholar
  35. 35.
    Wang HY, Tang K, Liang TY et al (2016) The comparison of clinical and biological characteristics between IDH1 and IDH2 mutations in gliomas. J Exp Clin Cancer Res 35:86.  https://doi.org/10.1186/s13046-016-0362-7 CrossRefGoogle Scholar
  36. 36.
    Huang Y, Liu Z, He L et al (2016) Radiomics signature: a potential biomarker for the prediction of disease-free survival in early-stage (I or II) non-small cell lung cancer. Radiology 281:947–957.  https://doi.org/10.1148/radiol.2016152234 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Radiology, Aerospace Medical CenterRepublic of Korea Air ForceCheongju-siRepublic of Korea
  2. 2.Departments of Radiology and Research Institute of Radiological ScienceYonsei University College of MedicineSeoulRepublic of Korea
  3. 3.NeurosurgeryYonsei University College of MedicineSeoulRepublic of Korea
  4. 4.PathologyYonsei University College of MedicineSeoulRepublic of Korea
  5. 5.Department of Neurosurgery, CHA Bundang Medical Center, School of MedicineCHA UniversitySeongnamRepublic of Korea

Personalised recommendations