Advertisement

Journal of Neuro-Oncology

, Volume 141, Issue 1, pp 57–70 | Cite as

A cancer tissue-specific FAM72 expression profile defines a novel glioblastoma multiform (GBM) gene-mutation signature

  • Chinmay Satish Rahane
  • Arne Kutzner
  • Klaus HeeseEmail author
Laboratory Investigation

Abstract

Introduction

Glioblastoma multiform (GBM) is a neural stem cell (NSC)-derived malignant brain tumor with complex genetic alterations challenging clinical treatments. FAM72 is a NSC-specific protein comprised of four paralogous genes (FAM72 A-D) in the human genome, but its functional tumorigenic significance is unclear.

Methods

We conducted an in-depth expression and somatic mutation data analysis of FAM72 (A-D) in GBM using the comprehensive human clinical cancer study database cBioPortal [including The Cancer Genome Atlas (TCGA)].

Results

We established a FAM72 transcription profile across TCGA correlated with the expression of the proliferative marker MKI67 and a tissue-specific gene-mutation signature represented by pivotal genes involved in driving the cell cycle. FAM72 paralogs are overexpressed in cancer cells, specifically correlating with the mitotic cell cycle genes ASPM, KIF14, KIF23, CENPE, CENPE, CEP55, SGO1, and BUB1, thereby contributing to centrosome and mitotic spindle formation. FAM72 expression correlation identifies a novel GBM-specific gene set (SCN9A, MXRA5, ADAM29, KDR, LRP1B, and PIK3C2G) in the de novo pathway of primary GBM predestined as viable targets for therapeutics.

Conclusion

Our newly identified primary GBM-specific gene-mutation signature, along with FAM72, could thus provide a new basis for prognostic biomarkers for diagnostics of GBM and could serve as potential therapeutic targets.

Keywords

Cancer Glia Glioblastoma Neuron SRGAP2 Stem cells TCGA 

Notes

Funding

This study was supported by Hanyang University by providing a scholarship to C.S.R. and by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2015R1D1A1A01057243 and 2016R1D1A1B03932599).

Compliance with ethical standards

Conflict of interest

The authors declare no conflicts of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

11060_2018_3029_MOESM1_ESM.pdf (20 mb)
Supplementary material 1 (PDF 20455 KB)
11060_2018_3029_MOESM2_ESM.xlsx (256 kb)
Supplementary material 2 (XLSX 256 KB)

References

  1. 1.
    Ferlay J, Soerjomataram I, Dikshit R et al (2015) Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 136:E359–E386.  https://doi.org/10.1002/ijc.29210 CrossRefGoogle Scholar
  2. 2.
    Stoyanov GS, Dzhenkov D, Ghenev P et al (2018) Cell biology of glioblastoma multiforme: from basic science to diagnosis and treatment. Med Oncol 35:27.  https://doi.org/10.1007/s12032-018-1083-x CrossRefGoogle Scholar
  3. 3.
    Heese K (2013) The protein p17 signaling pathways in cancer. Tumour Biol 34:4081–4087.  https://doi.org/10.1007/s13277-013-0999-1 CrossRefGoogle Scholar
  4. 4.
    Benayoun BA, Pollina EA, Ucar D et al (2014) H3K4me3 breadth is linked to cell identity and transcriptional consistency. Cell 158:673–688.  https://doi.org/10.1016/j.cell.2014.06.027 CrossRefGoogle Scholar
  5. 5.
    Nehar S, Mishra M, Heese K (2009) Identification and characterisation of the novel amyloid-beta peptide-induced protein p17. FEBS Lett 583:3247–3253.  https://doi.org/10.1016/j.febslet.2009.09.018 CrossRefGoogle Scholar
  6. 6.
    Kutzner A, Pramanik S, Kim PS, Heese K (2015) All-or-(N)One—an epistemological characterization of the human tumorigenic neuronal paralogous FAM72 gene loci. Genomics 106:278–285.  https://doi.org/10.1016/j.ygeno.2015.07.003 CrossRefGoogle Scholar
  7. 7.
    Ho NTT, Kutzner A, Heese K (2017) Brain plasticity, cognitive functions and neural stem cells: a pivotal role for the brain-specific neural master gene |-SRGAP2-FAM72-|. Biol Chem 399:55–61.  https://doi.org/10.1515/hsz-2017-0190 CrossRefGoogle Scholar
  8. 8.
    Ho NT, Kim PS, Kutzner A, Heese K (2017) Cognitive functions: human vs. animal—4:1 advantage |-FAM72-SRGAP2-|. J Mol Neurosci 61:603–606.  https://doi.org/10.1007/s12031-017-0901-5 CrossRefGoogle Scholar
  9. 9.
    Charrier C, Joshi K, Coutinho-Budd J et al (2012) Inhibition of SRGAP2 function by its human-specific paralogs induces neoteny during spine maturation. Cell 149:923–935.  https://doi.org/10.1016/j.cell.2012.03.034 CrossRefGoogle Scholar
  10. 10.
    Guo C, Zhang X, Fink SP et al (2008) Ugene, a newly identified protein that is commonly overexpressed in cancer and binds uracil DNA glycosylase. Cancer Res 68:6118–6126.  https://doi.org/10.1158/0008-5472.CAN-08-1259 CrossRefGoogle Scholar
  11. 11.
    Wang LT, Lin CS, Chai CY et al (2011) Functional interaction of Ugene and EBV infection mediates tumorigenic effects. Oncogene 30:2921–2932.  https://doi.org/10.1038/onc.2011.16 CrossRefGoogle Scholar
  12. 12.
    Rajan P, Stockley J, Sudbery IM et al (2014) Identification of a candidate prognostic gene signature by transcriptome analysis of matched pre- and post-treatment prostatic biopsies from patients with advanced prostate cancer. BMC Cancer 14:977.  https://doi.org/10.1186/1471-2407-14-977 CrossRefGoogle Scholar
  13. 13.
    Gao J, Aksoy BA, Dogrusoz U et al (2013) Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal 6:pl1.  https://doi.org/10.1126/scisignal.2004088 CrossRefGoogle Scholar
  14. 14.
    Iverson GL (2011) Z scores. In: Kreutzer JS, DeLuca J, Caplan B (eds) Encyclopedia of clinical neuropsychology. Springer New York, New York, pp 2739–2740CrossRefGoogle Scholar
  15. 15.
    Diez-Villanueva A, Mallona I, Peinado MA (2015) Wanderer, an interactive viewer to explore DNA methylation and gene expression data in human cancer. Epigenetics Chromatin 8:22.  https://doi.org/10.1186/s13072-015-0014-8 CrossRefGoogle Scholar
  16. 16.
    Team BD (2014) Bokeh: python library for interactive visualization. http://www.bokeh.pydata.org
  17. 17.
    Lawrence MS, Stojanov P, Polak P et al (2013) Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature 499:214–218.  https://doi.org/10.1038/nature12213 CrossRefGoogle Scholar
  18. 18.
    Greenman C, Stephens P, Smith R et al (2007) Patterns of somatic mutation in human cancer genomes. Nature 446:153–158.  https://doi.org/10.1038/nature05610 CrossRefGoogle Scholar
  19. 19.
    Goldman M, Craft B, Zhu J, Haussler D (2017) Abstract 2584: the UCSC Xena system for cancer genomics data visualization and interpretation. Cancer Res 77:2584–2584.  https://doi.org/10.1158/1538-7445.am2017-2584 CrossRefGoogle Scholar
  20. 20.
    Bland JM, Altman DG (2004) The logrank test. BMJ 328:1073.  https://doi.org/10.1136/bmj.328.7447.1073 CrossRefGoogle Scholar
  21. 21.
    Levo M, Segal E (2014) In pursuit of design principles of regulatory sequences. Nat Rev Genet 15:453–468.  https://doi.org/10.1038/nrg3684 CrossRefGoogle Scholar
  22. 22.
    Mathelier A, Fornes O, Arenillas DJ et al (2016) JASPAR 2016: a major expansion and update of the open-access database of transcription factor binding profiles. Nucleic Acids Res 44:D110–D115.  https://doi.org/10.1093/nar/gkv1176 CrossRefGoogle Scholar
  23. 23.
    Krishnamurthy N, Brown DP, Kirshner D, Sjölander K (2006) PhyloFacts: an online structural phylogenomic encyclopedia for protein functional and structural classification. Genome Biol 7:R83.  https://doi.org/10.1186/gb-2006-7-9-r83 CrossRefGoogle Scholar
  24. 24.
    Cock PJ, Antao T, Chang JT et al (2009) Biopython: freely available Python tools for computational molecular biology and bioinformatics. Bioinformatics 25:1422–1423.  https://doi.org/10.1093/bioinformatics/btp163 CrossRefGoogle Scholar
  25. 25.
    Yates A, Akanni W, Amode MR et al (2016) Ensembl 2016. Nucleic Acids Res 44:D710–D716.  https://doi.org/10.1093/nar/gkv1157 CrossRefGoogle Scholar
  26. 26.
    Whitfield ML, George LK, Grant GD, Perou CM (2006) Common markers of proliferation. Nat Rev Cancer 6:99–106.  https://doi.org/10.1038/nrc1802 CrossRefGoogle Scholar
  27. 27.
    Brennan CW, Verhaak RG, McKenna A et al (2013) The somatic genomic landscape of glioblastoma. Cell 155:462–477.  https://doi.org/10.1016/j.cell.2013.09.034 CrossRefGoogle Scholar
  28. 28.
    Cloughesy TF, Cavenee WK, Mischel PS (2014) Glioblastoma: from molecular pathology to targeted treatment. Annu Rev Pathol 9:1–25.  https://doi.org/10.1146/annurev-pathol-011110-130324 CrossRefGoogle Scholar
  29. 29.
    Castellanos R, Xie Q, Zheng D, Cvekl A, Morrow BE (2014) Mammalian TBX1 preferentially binds and regulates downstream targets via a tandem T-site repeat. PLoS One 9:e95151.  https://doi.org/10.1371/journal.pone.0095151 CrossRefGoogle Scholar
  30. 30.
    Zheng R, Blobel GA (2010) GATA transcription factors and cancer. Genes Cancer 1:1178–1188.  https://doi.org/10.1177/1947601911404223 CrossRefGoogle Scholar
  31. 31.
    Pereira B, Chin SF, Rueda OM et al (2016) The somatic mutation profiles of 2433 breast cancers refines their genomic and transcriptomic landscapes. Nat Commun 7:11479.  https://doi.org/10.1038/ncomms11479 CrossRefGoogle Scholar
  32. 32.
    Usadel B, Obayashi T, Mutwil M et al (2009) Co-expression tools for plant biology: opportunities for hypothesis generation and caveats. Plant Cell Environ 32:1633–1651.  https://doi.org/10.1111/j.1365-3040.2009.02040.x CrossRefGoogle Scholar
  33. 33.
    Lee HK, Hsu AK, Sajdak J, Qin J, Pavlidis P (2004) Coexpression analysis of human genes across many microarray data sets. Genome Res 14:1085–1094.  https://doi.org/10.1101/gr.1910904 CrossRefGoogle Scholar
  34. 34.
    Tipping AJ, Pina C, Castor A et al (2009) High GATA-2 expression inhibits human hematopoietic stem and progenitor cell function by effects on cell cycle. Blood 113:2661–2672.  https://doi.org/10.1182/blood-2008-06-161117 CrossRefGoogle Scholar
  35. 35.
    Kumar MS, Hancock DC, Molina-Arcas M et al (2012) The GATA2 transcriptional network is requisite for RAS oncogene-driven non-small cell lung cancer. Cell 149:642–655CrossRefGoogle Scholar
  36. 36.
    Vicente C, Vazquez I, Conchillo A et al (2012) Overexpression of GATA2 predicts an adverse prognosis for patients with acute myeloid leukemia and it is associated with distinct molecular abnormalities. Leukemia 26:550–554.  https://doi.org/10.1038/leu.2011.235 CrossRefGoogle Scholar
  37. 37.
    Rush AM, Dib-Hajj SD, Liu S et al (2006) A single sodium channel mutation produces hyper- or hypoexcitability in different types of neurons. Proc Natl Acad Sci USA 103:8245–8250.  https://doi.org/10.1073/pnas.0602813103 CrossRefGoogle Scholar
  38. 38.
    Poveda J, Sanz AB, Fernandez-Fernandez B et al (2017) MXRA5 is a TGF-beta1-regulated human protein with anti-inflammatory and anti-fibrotic properties. J Cell Mol Med 21:154–164.  https://doi.org/10.1111/jcmm.12953 CrossRefGoogle Scholar
  39. 39.
    He Y, Chen X, Liu H et al (2015) Matrix-remodeling associated 5 as a novel tissue biomarker predicts poor prognosis in non-small cell lung cancers. Cancer Biomark 15:645–651.  https://doi.org/10.3233/CBM-150504 CrossRefGoogle Scholar
  40. 40.
    Zhao M, Jia W, Jiang WG et al (2016) ADAM29 expression in human breast cancer and its effects on breast cancer cells in vitro. Anticancer Res 36:1251–1258Google Scholar
  41. 41.
    Wei X, Moncada-Pazos A, Cal S et al (2011) Analysis of the disintegrin-metalloproteinases family reveals ADAM29 and ADAM7 are often mutated in melanoma. Hum Mutat 32:E2148–E2175.  https://doi.org/10.1002/humu.21477 CrossRefGoogle Scholar
  42. 42.
    Liu Z, Qi L, Li Y, Zhao X, Sun B (2017) VEGFR2 regulates endothelial differentiation of colon cancer cells. BMC Cancer 17:593.  https://doi.org/10.1186/s12885-017-3578-9 CrossRefGoogle Scholar
  43. 43.
    Falasca M, Maffucci T (2012) Regulation and cellular functions of class II phosphoinositide 3-kinases. Biochem J 443:587–601.  https://doi.org/10.1042/BJ20120008 CrossRefGoogle Scholar
  44. 44.
    Tabouret E, Labussiere M, Alentorn A et al (2015) LRP1B deletion is associated with poor outcome for glioblastoma patients. J Neurol Sci 358:440–443.  https://doi.org/10.1016/j.jns.2015.09.345 CrossRefGoogle Scholar
  45. 45.
    Marko TA, Shamsan GA, Edwards EN et al (2016) Slit-Robo GTPase-activating protein 2 as a metastasis suppressor in osteosarcoma. Sci Rep 6:39059.  https://doi.org/10.1038/srep39059 CrossRefGoogle Scholar
  46. 46.
    Irizarry RA, Ladd-Acosta C, Wen B et al (2009) The human colon cancer methylome shows similar hypo- and hypermethylation at conserved tissue-specific CpG island shores. Nat Genet 41:178–186.  https://doi.org/10.1038/ng.298 CrossRefGoogle Scholar
  47. 47.
    Guo JU, Su Y, Shin JH et al (2014) Distribution, recognition and regulation of non-CpG methylation in the adult mammalian brain. Nat Neurosci 17:215–222.  https://doi.org/10.1038/nn.3607 CrossRefGoogle Scholar
  48. 48.
    Abba MC, Lacunza E, Butti M, Aldaz CM (2010) Breast cancer biomarker discovery in the functional genomic age: a systematic review of 42 gene expression signatures. Biomark Insights 5:103–118.  https://doi.org/10.4137/BMI.S5740 CrossRefGoogle Scholar
  49. 49.
    Lee M, Rivera-Rivera Y, Moreno CS, Saavedra HI (2017) The E2F activators control multiple mitotic regulators and maintain genomic integrity through Sgo1 and BubR1. Oncotarget 8:77649–77672.  https://doi.org/10.18632/oncotarget.20765 Google Scholar
  50. 50.
    Wang J, Ma Z, Carr SA et al (2017) Proteome profiling outperforms transcriptome profiling for coexpression based gene function prediction. Mol Cell Proteomics 16:121–134.  https://doi.org/10.1074/mcp.M116.060301 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Graduate School of Biomedical Science and EngineeringHanyang UniversitySeoulRepublic of Korea
  2. 2.Department of Information Systems, College of EngineeringHanyang UniversitySeoulRepublic of Korea

Personalised recommendations