Journal of Neuro-Oncology

, Volume 141, Issue 1, pp 183–194 | Cite as

The role of frameless stereotactic biopsy in contemporary neuro-oncology: molecular specifications and diagnostic yield in biopsied glioma patients

  • Marius Marc-Daniel MaderEmail author
  • Roman Rotermund
  • Tobias Martens
  • Manfred Westphal
  • Jakob Matschke
  • Tammam Abboud
Clinical Study



With the 2016 World Health Organization Classification of Tumors of the Central Nervous System (2016 CNS WHO), diagnosis of glioma is based on molecular parameters in addition to histology potentially leading to additional demands on quality of tissue samples. This may challenge the role of minimally invasive biopsy procedures. This study aims to evaluate the diagnostic yield of glioma samples from frameless stereotactic biopsies with focus on molecular information and explore the neuromolecular profile of a glioma biopsy cohort.


In a case series analysis, 180 consecutive frameless stereotactic biopsies with the Brainlab® Varioguide system from January 2011 to October 2017 were reviewed and patients with suspected or verified glioma were identified. Neuropathological samples were reprocessed in accordance with 2016 CNS WHO standards.


One hundred nineteen glioma patients were identified. Analysis of IDH status could be performed in 95.8% resulting in a cumulative mutation rate of 9.6%. A complete diagnosis according to 2016 CNS WHO including grading and molecular features was achieved in 110 cases (92.4%). Entities were revised in four cases. Most common diagnosis was IDH-wildtype glioblastoma (66.4%) followed by IDH-wildtype anaplastic astrocytoma (21.8%).


A formally complete diagnosis according to 2016 CNS WHO was achieved in the majority of cases. The biopsy cohort showed a prognostically unfavorable distribution of diagnoses and molecular features. Frameless stereotactic biopsy seems to be confirmed as a useful diagnostic tool in contemporary neuro-oncology—however, certain potential limitations should be considered.


Biopsy Glioma Immunohistochemistry Neuropathology Stereotaxic techniques World Health Organization 



Anaplastic astrocytoma


World Health Organization classification of tumors of the central nervous system




Intensive care unit


Modified Rankin Scale


Standard deviation


Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. For this type of study formal consent is not required.


  1. 1.
    Banan R, Hartmann C (2017) The new WHO 2016 classification of brain tumors-what neurosurgeons need to know. Acta Neurochir 159(3):403–418. CrossRefGoogle Scholar
  2. 2.
    Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee WK, Ohgaki H, Wiestler OD, Kleihues P, Ellison DW (2016) The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol 131(6):803–820. CrossRefGoogle Scholar
  3. 3.
    Dammers R, Schouten JW, Haitsma IK, Vincent AJ, Kros JM, Dirven CM (2010) Towards improving the safety and diagnostic yield of stereotactic biopsy in a single centre. Acta Neurochir 152(11):1915–1921. CrossRefGoogle Scholar
  4. 4.
    Harrisson SE, Shooman D, Grundy PL (2012) A prospective study of the safety and efficacy of frameless, pinless electromagnetic image-guided biopsy of cerebral lesions. Neurosurgery 70(1 Suppl Operative):29–33. (discussion 33)Google Scholar
  5. 5.
    Livermore LJ, Ma R, Bojanic S, Pereira EA (2014) Yield and complications of frame-based and frameless stereotactic brain biopsy–the value of intra-operative histological analysis. Br J Neurosurg 28(5):637–644. CrossRefGoogle Scholar
  6. 6.
    Verploegh IS, Volovici V, Haitsma IK, Schouten JW, Dirven CM, Kros JM, Dammers R (2015) Contemporary frameless intracranial biopsy techniques: might variation in safety and efficacy be expected? Acta Neurochir 157(11):2011–2016. (discussion 2016)CrossRefGoogle Scholar
  7. 7.
    Gempt J, Buchmann N, Ryang YM, Krieg S, Kreutzer J, Meyer B, Ringel F (2012) Frameless image-guided stereotaxy with real-time visual feedback for brain biopsy. Acta Neurochir 154(9):1663–1667. CrossRefGoogle Scholar
  8. 8.
    Buchalla R, Hopf-Jensen S, Rubarth O, Borm W (2013) Frameless navigated biopsy with the BrainLAB(R) VarioGuide system: a technical note. J Neurol Surg A 74(5):321–324. Google Scholar
  9. 9.
    Ringel F, Ingerl D, Ott S, Meyer B (2009) VarioGuide: a new frameless image-guided stereotactic system–accuracy study and clinical assessment. Neurosurgery 64(5 Suppl 2):365–371. (discussion 363–371)Google Scholar
  10. 10.
    Kim JE, Kim DG, Paek SH, Jung HW (2003) Stereotactic biopsy for intracranial lesions: reliability and its impact on the planning of treatment. Acta Neurochir 145(7):547–554. (discussion 545–554)CrossRefGoogle Scholar
  11. 11.
    Paleologos TS, Dorward NL, Wadley JP, Thomas DG (2001) Clinical validation of true frameless stereotactic biopsy: analysis of the first 125 consecutive cases. Neurosurgery 49(4):830–835. (discussion 835–837)Google Scholar
  12. 12.
    Dammers R, Haitsma IK, Schouten JW, Kros JM, Avezaat CJ, Vincent AJ (2008) Safety and efficacy of frameless and frame-based intracranial biopsy techniques. Acta Neurochir 150(1):23–29. CrossRefGoogle Scholar
  13. 13.
    Dorward NL, Paleologos TS, Alberti O, Thomas DG (2002) The advantages of frameless stereotactic biopsy over frame-based biopsy. Br J Neurosurg 16(2):110–118CrossRefGoogle Scholar
  14. 14.
    Smith JS, Quinones-Hinojosa A, Barbaro NM, McDermott MW (2005) Frame-based stereotactic biopsy remains an important diagnostic tool with distinct advantages over frameless stereotactic biopsy. J Neurooncol 73(2):173–179. CrossRefGoogle Scholar
  15. 15.
    Woodworth GF, McGirt MJ, Samdani A, Garonzik I, Olivi A, Weingart JD (2006) Frameless image-guided stereotactic brain biopsy procedure: diagnostic yield, surgical morbidity, and comparison with the frame-based technique. J Neurosurg 104(2):233–237. CrossRefGoogle Scholar
  16. 16.
    Bradac O, Steklacova A, Nebrenska K, Vrana J, de Lacy P, Benes V (2017) Accuracy of varioguide frameless stereotactic system against frame-based stereotaxy: prospective, randomized, single-center Study. World Neurosurg 104:831–840. CrossRefGoogle Scholar
  17. 17.
    Air EL, Leach JL, Warnick RE, McPherson CM (2009) Comparing the risks of frameless stereotactic biopsy in eloquent and noneloquent regions of the brain: a retrospective review of 284 cases. J Neurosurg 111(4):820–824. CrossRefGoogle Scholar
  18. 18.
    Bekelis K, Radwan TA, Desai A, Roberts DW (2012) Frameless robotically targeted stereotactic brain biopsy: feasibility, diagnostic yield, and safety. J Neurosurg 116(5):1002–1006. CrossRefGoogle Scholar
  19. 19.
    Czyz M, Tabakow P, Weiser A, Lechowicz-Glogowska BE, Zub LW, Jarmundowicz W (2014) The safety and effectiveness of low field intraoperative MRI guidance in frameless stereotactic biopsies of brain tumours-design and interim analysis of a prospective randomized trial. Neurosurg Rev 37(1):127–137. CrossRefGoogle Scholar
  20. 20.
    Frati A, Pichierri A, Bastianello S, Raco A, Santoro A, Esposito V, Giangaspero F, Salvati M (2011) Frameless stereotactic cerebral biopsy: our experience in 296 cases. Stereotact Funct Neurosurg 89(4):234–245. CrossRefGoogle Scholar
  21. 21.
    Jain D, Sharma MC, Sarkar C, Gupta D, Singh M, Mahapatra AK (2006) Comparative analysis of diagnostic accuracy of different brain biopsy procedures. Neurol India 54(4):394–398CrossRefGoogle Scholar
  22. 22.
    Lefranc M, Capel C, Pruvot-Occean AS, Fichten A, Desenclos C, Toussaint P, Le Gars D, Peltier J (2015) Frameless robotic stereotactic biopsies: a consecutive series of 100 cases. J Neurosurg 122(2):342–352. CrossRefGoogle Scholar
  23. 23.
    Lu Y, Yeung C, Radmanesh A, Wiemann R, Black PM, Golby AJ (2015) Comparative effectiveness of frame-based, frameless, and intraoperative magnetic resonance imaging-guided brain biopsy techniques. World Neurosurg 83(3):261–268. CrossRefGoogle Scholar
  24. 24.
    Nishihara M, Takeda N, Harada T, Kidoguchi K, Tatsumi S, Tanaka K, Sasayama T, Kohmura E (2014) Diagnostic yield and morbidity by neuronavigation-guided frameless stereotactic biopsy using magnetic resonance imaging and by frame-based computed tomography-guided stereotactic biopsy. Surg Neurol Int 5(Suppl 8):S421–S426. CrossRefGoogle Scholar
  25. 25.
    Zhang JS, Qu L, Wang Q, Jin W, Hou YZ, Sun GC, Li FY, Yu XG, Xu BN, Chen XL (2017) Intraoperative visualisation of functional structures facilitates safe frameless stereotactic biopsy in the motor eloquent regions of the brain. Br J Neurosurg. Google Scholar
  26. 26.
    Zhang QJ, Wang WH, Wei XP, Yu YG (2013) Safety and efficacy of frameless stereotactic brain biopsy techniques. Chin Med Sci J 28(2):113–116CrossRefGoogle Scholar
  27. 27.
    Willems PW, Noordmans HJ, Ramos LM, Taphoorn MJ, Berkelbach van der Sprenkel JW, Viergever MA, Tulleken CA (2003) Clinical evaluation of stereotactic brain biopsies with an MKM-mounted instrument holder. Acta Neurochir 145(10):889–897. (discussion 897)CrossRefGoogle Scholar
  28. 28.
    Zoeller GK, Benveniste RJ, Landy H, Morcos JJ, Jagid J (2009) Outcomes and management strategies after nondiagnostic stereotactic biopsies of brain lesions. Stereotact Funct Neurosurg 87(3):174–181. CrossRefGoogle Scholar
  29. 29.
    Shooman D, Belli A, Grundy PL (2010) Image-guided frameless stereotactic biopsy without intraoperative neuropathological examination. J Neurosurg 113(2):170–178. CrossRefGoogle Scholar
  30. 30.
    Widhalm G, Minchev G, Woehrer A, Preusser M, Kiesel B, Furtner J, Mert A, Di Ieva A, Tomanek B, Prayer D, Marosi C, Hainfellner JA, Knosp E, Wolfsberger S (2012) Strong 5-aminolevulinic acid-induced fluorescence is a novel intraoperative marker for representative tissue samples in stereotactic brain tumor biopsies. Neurosurg Rev 35(3):381–391. (discussion 391)CrossRefGoogle Scholar
  31. 31.
    Khatab S, Spliet W, Woerdeman PA (2014) Frameless image-guided stereotactic brain biopsies: emphasis on diagnostic yield. Acta Neurochir 156(8):1441–1450. CrossRefGoogle Scholar
  32. 32.
    Barnett GH, Miller DW, Weisenberger J (1999) Frameless stereotaxy with scalp-applied fiducial markers for brain biopsy procedures: experience in 218 cases. J Neurosurg 91(4):569–576. CrossRefGoogle Scholar
  33. 33.
    Kondziolka D, Lunsford LD (1999) The role of stereotactic biopsy in the management of gliomas. J Neurooncol 42(3):205–213CrossRefGoogle Scholar
  34. 34.
    Sahm F, Reuss D, Koelsche C, Capper D, Schittenhelm J, Heim S, Jones DT, Pfister SM, Herold-Mende C, Wick W, Mueller W, Hartmann C, Paulus W, von Deimling A (2014) Farewell to oligoastrocytoma: in situ molecular genetics favor classification as either oligodendroglioma or astrocytoma. Acta Neuropathol 128(4):551–559. CrossRefGoogle Scholar
  35. 35.
    Herrlinger U, Jones DTW, Glas M, Hattingen E, Gramatzki D, Stuplich M, Felsberg J, Bahr O, Gielen GH, Simon M, Wiewrodt D, Schabet M, Hovestadt V, Capper D, Steinbach JP, von Deimling A, Lichter P, Pfister SM, Weller M, Reifenberger G (2016) Gliomatosis cerebri: no evidence for a separate brain tumor entity. Acta Neuropathol 131(2):309–319. CrossRefGoogle Scholar
  36. 36.
    Tabouret E, Nguyen AT, Dehais C, Carpentier C, Ducray F, Idbaih A, Mokhtari K, Jouvet A, Uro-Coste E, Colin C, Chinot O, Loiseau H, Moyal E, Maurage CA, Polivka M, Lechapt-Zalcman E, Desenclos C, Meyronet D, Delattre JY, Figarella-Branger D (2016) Prognostic impact of the 2016 WHO classification of diffuse gliomas in the French POLA cohort. Acta Neuropathol 132(4):625–634. CrossRefGoogle Scholar
  37. 37.
    Jiang H, Cui Y, Wang J, Lin S (2017) Impact of epidemiological characteristics of supratentorial gliomas in adults brought about by the 2016 world health organization classification of tumors of the central nervous system. Oncotarget 8(12):20354–20361. Google Scholar
  38. 38.
    Cancer Genome Atlas Research N, Brat DJ, Verhaak RG, Aldape KD, Yung WK, Salama SR, Cooper LA, Rheinbay E, Miller CR, Vitucci M, Morozova O, Robertson AG, Noushmehr H, Laird PW, Cherniack AD, Akbani R, Huse JT, Ciriello G, Poisson LM, Barnholtz-Sloan JS, Berger MS, Brennan C, Colen RR, Colman H, Flanders AE, Giannini C, Grifford M, Iavarone A, Jain R, Joseph I, Kim J, Kasaian K, Mikkelsen T, Murray BA, O’Neill BP, Pachter L, Parsons DW, Sougnez C, Sulman EP, Vandenberg SR, Van Meir EG, von Deimling A, Zhang H, Crain D, Lau K, Mallery D, Morris S, Paulauskis J, Penny R, Shelton T, Sherman M, Yena P, Black A, Bowen J, Dicostanzo K, Gastier-Foster J, Leraas KM, Lichtenberg TM, Pierson CR, Ramirez NC, Taylor C, Weaver S, Wise L, Zmuda E, Davidsen T, Demchok JA, Eley G, Ferguson ML, Hutter CM, Mills Shaw KR, Ozenberger BA, Sheth M, Sofia HJ, Tarnuzzer R, Wang Z, Yang L, Zenklusen JC, Ayala B, Baboud J, Chudamani S, Jensen MA, Liu J, Pihl T, Raman R, Wan Y, Wu Y, Ally A, Auman JT, Balasundaram M, Balu S, Baylin SB, Beroukhim R, Bootwalla MS, Bowlby R, Bristow CA, Brooks D, Butterfield Y, Carlsen R, Carter S, Chin L, Chu A, Chuah E, Cibulskis K, Clarke A, Coetzee SG, Dhalla N, Fennell T, Fisher S, Gabriel S, Getz G, Gibbs R, Guin R, Hadjipanayis A, Hayes DN, Hinoue T, Hoadley K, Holt RA, Hoyle AP, Jefferys SR, Jones S, Jones CD, Kucherlapati R, Lai PH, Lander E, Lee S, Lichtenstein L, Ma Y, Maglinte DT, Mahadeshwar HS, Marra MA, Mayo M, Meng S, Meyerson ML, Mieczkowski PA, Moore RA, Mose LE, Mungall AJ, Pantazi A, Parfenov M, Park PJ, Parker JS, Perou CM, Protopopov A, Ren X, Roach J, Sabedot TS, Schein J, Schumacher SE, Seidman JG, Seth S, Shen H, Simons JV, Sipahimalani P, Soloway MG, Song X, Sun H, Tabak B, Tam A, Tan D, Tang J, Thiessen N, Triche T Jr, Van Den Berg DJ, Veluvolu U, Waring S, Weisenberger DJ, Wilkerson MD, Wong T, Wu J, Xi L, Xu AW, Yang L, Zack TI, Zhang J, Aksoy BA, Arachchi H, Benz C, Bernard B, Carlin D, Cho J, DiCara D, Frazer S, Fuller GN, Gao J, Gehlenborg N, Haussler D, Heiman DI, Iype L, Jacobsen A, Ju Z, Katzman S, Kim H, Knijnenburg T, Kreisberg RB, Lawrence MS, Lee W, Leinonen K, Lin P, Ling S, Liu W, Liu Y, Liu Y, Lu Y, Mills G, Ng S, Noble MS, Paull E, Rao A, Reynolds S, Saksena G, Sanborn Z, Sander C, Schultz N, Senbabaoglu Y, Shen R, Shmulevich I, Sinha R, Stuart J, Sumer SO, Sun Y, Tasman N, Taylor BS, Voet D, Weinhold N, Weinstein JN, Yang D, Yoshihara K, Zheng S, Zhang W, Zou L, Abel T, Sadeghi S, Cohen ML, Eschbacher J, Hattab EM, Raghunathan A, Schniederjan MJ, Aziz D, Barnett G, Barrett W, Bigner DD, Boice L, Brewer C, Calatozzolo C, Campos B, Carlotti CG Jr, Chan TA, Cuppini L, Curley E, Cuzzubbo S, Devine K, DiMeco F, Duell R, Elder JB, Fehrenbach A, Finocchiaro G, Friedman W, Fulop J, Gardner J, Hermes B, Herold-Mende C, Jungk C, Kendler A, Lehman NL, Lipp E, Liu O, Mandt R, McGraw M, McLendon R, McPherson C, Neder L, Nguyen P, Noss A, Nunziata R, Ostrom QT, Palmer C, Perin A, Pollo B, Potapov A, Potapova O, Rathmell WK, Rotin D, Scarpace L, Schilero C, Senecal K, Shimmel K, Shurkhay V, Sifri S, Singh R, Sloan AE, Smolenski K, Staugaitis SM, Steele R, Thorne L, Tirapelli DP, Unterberg A, Vallurupalli M, Wang Y, Warnick R, Williams F, Wolinsky Y, Bell S, Rosenberg M, Stewart C, Huang F, Grimsby JL, Radenbaugh AJ, Zhang J (2015) Comprehensive, integrative genomic analysis of diffuse lower-grade gliomas. New Engl J Med 372(26):2481–2498. CrossRefGoogle Scholar
  39. 39.
    Killela PJ, Pirozzi CJ, Healy P, Reitman ZJ, Lipp E, Rasheed BA, Yang R, Diplas BH, Wang Z, Greer PK, Zhu H, Wang CY, Carpenter AB, Friedman H, Friedman AH, Keir ST, He J, He Y, McLendon RE, Herndon JE 2nd, Yan H, Bigner DD (2014) Mutations in IDH1, IDH2, and in the TERT promoter define clinically distinct subgroups of adult malignant gliomas. Oncotarget 5(6):1515–1525. Google Scholar
  40. 40.
    Reuss DE, Kratz A, Sahm F, Capper D, Schrimpf D, Koelsche C, Hovestadt V, Bewerunge-Hudler M, Jones DT, Schittenhelm J, Mittelbronn M, Rushing E, Simon M, Westphal M, Unterberg A, Platten M, Paulus W, Reifenberger G, Tonn JC, Aldape K, Pfister SM, Korshunov A, Weller M, Herold-Mende C, Wick W, Brandner S, von Deimling A (2015) Adult IDH wild type astrocytomas biologically and clinically resolve into other tumor entities. Acta Neuropathol 130(3):407–417. CrossRefGoogle Scholar
  41. 41.
    Olar A, Wani KM, Alfaro-Munoz KD, Heathcock LE, van Thuijl HF, Gilbert MR, Armstrong TS, Sulman EP, Cahill DP, Vera-Bolanos E, Yuan Y, Reijneveld JC, Ylstra B, Wesseling P, Aldape KD (2015) IDH mutation status and role of WHO grade and mitotic index in overall survival in grade II-III diffuse gliomas. Acta Neuropathol 129(4):585–596. CrossRefGoogle Scholar
  42. 42.
    Reuss DE, Mamatjan Y, Schrimpf D, Capper D, Hovestadt V, Kratz A, Sahm F, Koelsche C, Korshunov A, Olar A, Hartmann C, Reijneveld JC, Wesseling P, Unterberg A, Platten M, Wick W, Herold-Mende C, Aldape K, von Deimling A (2015) IDH mutant diffuse and anaplastic astrocytomas have similar age at presentation and little difference in survival: a grading problem for WHO. Acta Neuropathol 129(6):867–873. CrossRefGoogle Scholar
  43. 43.
    Hegi ME, Diserens AC, Gorlia T, Hamou MF, de Tribolet N, Weller M, Kros JM, Hainfellner JA, Mason W, Mariani L, Bromberg JE, Hau P, Mirimanoff RO, Cairncross JG, Janzer RC, Stupp R (2005) MGMT gene silencing and benefit from temozolomide in glioblastoma. New Engl J Med 352(10):997–1003. CrossRefGoogle Scholar
  44. 44.
    Zhang K, Wang XQ, Zhou B, Zhang L (2013) The prognostic value of MGMT promoter methylation in glioblastoma multiforme: a meta-analysis. Fam Cancer 12(3):449–458. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of NeurosurgeryUniversity Medical Centre Hamburg-EppendorfHamburgGermany
  2. 2.Department of NeuropathologyUniversity Medical Centre Hamburg-EppendorfHamburgGermany
  3. 3.Department of NeurosurgeryUniversity Medical Centre GöttingenGöttingenGermany

Personalised recommendations