Journal of Neuro-Oncology

, Volume 127, Issue 3, pp 505–514 | Cite as

Valproic acid, compared to other antiepileptic drugs, is associated with improved overall and progression-free survival in glioblastoma but worse outcome in grade II/III gliomas treated with temozolomide

  • Navid Redjal
  • Clemens Reinshagen
  • Andrew Le
  • Brian P. Walcott
  • Erin McDonnell
  • Jorg Dietrich
  • Brian V. Nahed
Clinical Study


Valproic acid (VPA) is an anti-epileptic drug with properties of a histone deacetylase inhibitor (HDACi). HDACi play a key role in epigenetic regulation of gene expression and have been increasingly used as anticancer agents. Recent studies suggest that VPA is associated with improved survival in high-grade gliomas. However, effects on lower grade gliomas have not been examined. This study investigates whether use of VPA correlates with tumor grade, histological progression, progression-free and overall survival (OS) in grade II, III, and IV glioma patients. Data from 359 glioma patients (WHO II–IV) treated with temozolomide plus an antiepileptic drug (VPA or another antiepileptic drug) between January 1997 and June 2013 at the Massachusetts General Hospital was analyzed retrospectively. After confounder adjustment, VPA was associated with a 28 % decrease in hazard of death (p = 0.031) and a 28 % decrease in the hazard of progression or death (p = 0.015) in glioblastoma. Additionally, VPA dose correlated with reduced hazard of death by 7 % (p = 0.002) and reduced hazard of progression or death by 5 % (p < 0.001) with each 100 g increase in total dose. Conversely, in grade II and III gliomas VPA was associated with a 118 % increased risk of tumor progression or death (p = 0.014), and every additional 100 g of VPA raised the hazard of progression or death by 4 %, although not statistically significant (p = 0.064). Moreover, grade II and III glioma patients taking VPA had 2.17 times the risk of histological progression (p = 0.020), although this effect was no longer significant after confounder adjustment. In conclusion, VPA was associated with improved survival in glioblastoma in a dose-dependent manner. However, in grade II and III gliomas, VPA was linked to histological progression and decrease in progression-free survival. Prospective evaluation of VPA treatment for glioma patients is warranted to confirm these findings.


Valproic acid HDAC Histone deacetylase inhibitor Glioblastoma Glioma Low-grade Survival Progression 



The authors confirm the originality of this work. The work was not submitted for publication to another journal.

Compliance with ethical standards

Conflict of Interest

The authors declare that they have no financial or other conflict of interest in relation to this research and its publication.

Supplementary material

11060_2016_2054_MOESM1_ESM.docx (20 kb)
Supplementary material 1 (DOCX 21 kb)


  1. 1.
    Ostrom QT, Gittleman H, Liao P, Rouse C, Chen Y, Dowling J, Wolinsky Y, Kruchko C, Barnholtz-Sloan J (2014) CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2007-2011. Neuro Oncol 16(Suppl 4):63. doi: 10.1093/neuonc/nou223 CrossRefGoogle Scholar
  2. 2.
    Ricard D, Idbaih A, Ducray F, Lahutte M, Hoang-Xuan K, Delattre J-YY (2012) Primary brain tumours in adults. Lancet 379:1984–1996. doi: 10.1016/S0140-6736(11)61346-9 CrossRefPubMedGoogle Scholar
  3. 3.
    Rigau V, Zouaoui S, Mathieu-Daudé H, Darlix A, Maran A, Trétarre B, Bessaoud F, Bauchet F, Attaoua R, Fabbro-Peray P, Fabbro M, Kerr C, Taillandier L, Duffau H, Figarella-Branger D, Costes V, Bauchet L, Société Française de Neuropathologie SFdN, Club de Neuro-Oncologie of the Société Française de N, Association des Neuro-Oncologues d’Expression Française (ANOCEF) (2011) French brain tumor database: 5-year histological results on 25 756 cases. Brain Pathol 21(6):633–644. doi: 10.1111/j.1750-3639.2011.00491.x CrossRefPubMedGoogle Scholar
  4. 4.
    Hardesty DA, Sanai N (2011) The value of glioma extent of resection in the modern neurosurgical era. Front Neurol 3:140. doi: 10.3389/fneur.2012.00140 Google Scholar
  5. 5.
    Lacroix M, Abi-Said D, Fourney DR, Gokaslan ZL, Shi W, DeMonte F, Lang FF, McCutcheon IE, Hassenbusch SJ, Holland E, Hess K, Michael C, Miller D, Sawaya R (2001) A multivariate analysis of 416 patients with glioblastoma multiforme: prognosis, extent of resection, and survival. J Neurosurg 95:190–198. doi: 10.3171/jns.2001.95.2.0190 CrossRefPubMedGoogle Scholar
  6. 6.
    Stupp R, Hegi ME, Mason WP, van den Bent MJ, Taphoorn MJ, Janzer RC, Ludwin SK, Allgeier A, Fisher B, Belanger K, Hau P, Brandes AA, Gijtenbeek J, Marosi C, Vecht CJ, Mokhtari K, Wesseling P, Villa S, Eisenhauer E, Gorlia T, Weller M, Lacombe D, Cairncross JG, Mirimanoff R-OO, for, of, Groups E, of Group N (2009) Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol 10:459–466. doi: 10.1016/S1470-2045(09)70025-7 CrossRefPubMedGoogle Scholar
  7. 7.
    Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, Belanger K, Brandes AA, Marosi C, Bogdahn U, Curschmann J, Janzer RC, Ludwin SK, Gorlia T, Allgeier A, Lacombe D, Cairncross JG, Eisenhauer E, Mirimanoff RO, European Organisation for R, Treatment of Cancer Brain T, Radiotherapy G, National Cancer Institute of Canada Clinical Trials G (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. The New England journal of medicine 352:987–996. doi: 10.1056/NEJMoa043330 CrossRefPubMedGoogle Scholar
  8. 8.
    Price RL, Chiocca EA (2014) Evolution of malignant glioma treatment: from chemotherapy to vaccines to viruses. Neurosurgery 61(Suppl 1):74–83. doi: 10.1227/NEU.0000000000000390 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Kumthekar P, Raizer J, Singh S (2015) Low-grade glioma. Cancer Treat Res 163:75–87. doi: 10.1007/978-3-319-12048-5_5 CrossRefPubMedGoogle Scholar
  10. 10.
    Pouratian N, Schiff D (2010) Management of low-grade glioma. Curr Neurol Neurosci Rep 10:224–231. doi: 10.1007/s11910-010-0105-7 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Tandon A, Schiff D (2014) Therapeutic decision making in patients with newly diagnosed low grade glioma. Curr Treat Options Oncol 15:529–538. doi: 10.1007/s11864-014-0304-6 CrossRefPubMedGoogle Scholar
  12. 12.
    Yung WK, Prados MD, Yaya-Tur R, Rosenfeld SS, Brada M, Friedman HS, Albright R, Olson J, Chang SM, O’Neill AM, Friedman AH, Bruner J, Yue N, Dugan M, Zaknoen S, Levin VA (1999) Multicenter phase II trial of temozolomide in patients with anaplastic astrocytoma or anaplastic oligoastrocytoma at first relapse. Temodal Brain Tumor Group. J Clin Oncol 17:2762–2771PubMedGoogle Scholar
  13. 13.
    Klein M (2009) Health-related quality of life aspects in patients with low-grade glioma. Adv Tech Stand Neurosurg 35:213–235Google Scholar
  14. 14.
    van den Bent MJ, Afra D, de Witte O, Ben Hassel M, Schraub S, Hoang-Xuan K, Malmström POO, Collette L, Piérart M, Mirimanoff R, Karim AB, Radiotherapy E, Brain Tumor G, The UKMRC (2004) Long-term efficacy of early versus delayed radiotherapy for low-grade astrocytoma and oligodendroglioma in adults: the EORTC 22845 randomised trial. Lancet 366:985–990. doi: 10.1016/S0140-6736(05)67070-5 CrossRefGoogle Scholar
  15. 15.
    Malmström A, Grønberg BHH, Marosi C, Stupp R, Frappaz D, Schultz H, Abacioglu U, Tavelin B, Lhermitte B, Hegi ME, Rosell J, Henriksson R, Nordic (2012) Temozolomide versus standard 6-week radiotherapy versus hypofractionated radiotherapy in patients older than 60 years with glioblastoma: the Nordic randomised, phase 3 trial. Lancet Oncol 13:916–926. doi: 10.1016/S1470-2045(12)70265-6 CrossRefPubMedGoogle Scholar
  16. 16.
    Wick W, Platten M, Meisner C, Felsberg J, Tabatabai G, Simon M, Nikkhah G, Papsdorf K, Steinbach JP, Sabel M, Combs SE, Vesper J, Braun C, Meixensberger J, Ketter R, Mayer-Steinacker R, Reifenberger G, Weller M, NOA-08 Study Group of Neuro-oncology Working Group (NOA) of German Cancer Society (2012) Temozolomide chemotherapy alone versus radiotherapy alone for malignant astrocytoma in the elderly: the NOA-08 randomised, phase 3 trial. The Lancet Oncology 13:707–715. doi: 10.1016/S1470-2045(12)70164-X CrossRefPubMedGoogle Scholar
  17. 17.
    Hegi ME, Diserens A-CC, Gorlia T, Hamou M-FF, de Tribolet N, Weller M, Kros JM, Hainfellner JA, Mason W, Mariani L, Bromberg JE, Hau P, Mirimanoff ROO, Cairncross JG, Janzer RC, Stupp R (2005) MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med 352:997–1003. doi: 10.1056/NEJMoa043331 CrossRefPubMedGoogle Scholar
  18. 18.
    Cairncross G, Wang M, Shaw E, Jenkins R, Brachman D, Buckner J, Fink K, Souhami L, Laperriere N, Curran W, Mehta M (2013) Phase III trial of chemoradiotherapy for anaplastic oligodendroglioma: long-term results of RTOG 9402. J Clin Oncol 31:337–343. doi: 10.1200/JCO.2012.43.2674 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    van den Bent MJ, Brandes AA, Taphoorn MJ, Kros JM, Kouwenhoven MC, Delattre J-YY, Bernsen HJJ, Frenay M, Tijssen CC, Grisold W, Sipos L, Enting RH, French PJ, Dinjens WN, Vecht CJ, Allgeier A, Lacombe D, Gorlia T, Hoang-Xuan K (2013) Adjuvant procarbazine, lomustine, and vincristine chemotherapy in newly diagnosed anaplastic oligodendroglioma: long-term follow-up of EORTC brain tumor group study 26951. J Clin Oncol 31:344–350. doi: 10.1200/JCO.2012.43.2229 CrossRefPubMedGoogle Scholar
  20. 20.
    van Breemen MS, Wilms EB, Vecht CJ (2007) Epilepsy in patients with brain tumours: epidemiology, mechanisms, and management. Lancet Neurol 6:421–430. doi: 10.1016/S1474-4422(07)70103-5 CrossRefPubMedGoogle Scholar
  21. 21.
    Göttlicher M, Minucci S, Zhu P, Krämer OH, Schimpf A, Giavara S, Sleeman JP, Lo Coco F, Nervi C, Pelicci PG, Heinzel T (2001) Valproic acid defines a novel class of HDAC inhibitors inducing differentiation of transformed cells. EMBO J 20:6969–6978. doi: 10.1093/emboj/20.24.6969 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Gurvich N, Tsygankova OM, Meinkoth JL, Klein PS (2004) Histone deacetylase is a target of valproic acid-mediated cellular differentiation. Cancer Res 64:1079–1086CrossRefPubMedGoogle Scholar
  23. 23.
    Phiel CJ, Zhang F, Huang EY, Guenther MG, Lazar MA, Klein PS (2001) Histone deacetylase is a direct target of valproic acid, a potent anticonvulsant, mood stabilizer, and teratogen. J Biol Chem 276:36734–36741. doi: 10.1074/jbc.M101287200 CrossRefPubMedGoogle Scholar
  24. 24.
    Acharya MR, Sparreboom A, Venitz J, Figg WD (2005) Rational development of histone deacetylase inhibitors as anticancer agents: a review. Mol Pharmacol 68:917–932. doi: 10.1124/mol.105.014167 CrossRefPubMedGoogle Scholar
  25. 25.
    Duenas-Gonzalez A, Candelaria M, Perez-Plascencia C, Perez-Cardenas E, de la Cruz-Hernandez E, Herrera LA (2008) Valproic acid as epigenetic cancer drug: preclinical, clinical and transcriptional effects on solid tumors. Cancer Treat Rev 34:206–222. doi: 10.1016/j.ctrv.2007.11.003 CrossRefPubMedGoogle Scholar
  26. 26.
    Barker CA, Bishop AJ, Chang M, Beal K, Chan TA (2013) Valproic acid use during radiation therapy for glioblastoma associated with improved survival. Int J Radiat Oncol Biol Phys 86:504–509. doi: 10.1016/j.ijrobp.2013.02.012 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Felix FH, Trompieri NM, de Araujo OL, da Trindade KM, Fontenele JB (2011) Potential role for valproate in the treatment of high–risk brain tumors of childhood-results from a retrospective observational cohort study. Pediatr Hematol Oncol 28:556–570. doi: 10.3109/08880018.2011.563774 CrossRefPubMedGoogle Scholar
  28. 28.
    Guthrie GD, Eljamel S (2013) Impact of particular antiepileptic drugs on the survival of patients with glioblastoma multiforme. J Neurosurg 118:859–865. doi: 10.3171/2012.10.JNS12169 CrossRefPubMedGoogle Scholar
  29. 29.
    Kerkhof M, Dielemans JC, van Breemen MS, Zwinkels H, Walchenbach R, Taphoorn MJ, Vecht CJ (2013) Effect of valproic acid on seizure control and on survival in patients with glioblastoma multiforme. Neuro Oncol 15:961–967. doi: 10.1093/neuonc/not057 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Weller M, Gorlia T, Cairncross JG, van den Bent MJ, Mason W, Belanger K, Brandes AA, Bogdahn U, Macdonald DR, Forsyth P, Rossetti AO, Lacombe D, Mirimanoff ROO, Vecht CJ, Stupp R (2011) Prolonged survival with valproic acid use in the EORTC/NCIC temozolomide trial for glioblastoma. Neurology 77:1156–1164. doi: 10.1212/WNL.0b013e31822f02e1 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Bromberg JE, van den Bent MJ (2009) Oligodendrogliomas: molecular biology and treatment. Oncologist 14:155–163. doi: 10.1634/theoncologist.2008-0248 CrossRefPubMedGoogle Scholar
  32. 32.
    Cairncross JG, Ueki K, Zlatescu MC, Lisle DK, Finkelstein DM, Hammond RR, Silver JS, Stark PC, Macdonald DR, Ino Y, Ramsay DA, Louis DN (1998) Specific genetic predictors of chemotherapeutic response and survival in patients with anaplastic oligodendrogliomas. J Natl Cancer Inst 90:1473–1479CrossRefPubMedGoogle Scholar
  33. 33.
    Hess-Stumpp H (2005) Histone deacetylase inhibitors and cancer: from cell biology to the clinic. Eur J Cell Biol 84:109–121. doi: 10.1016/j.ejcb.2004.12.010 CrossRefPubMedGoogle Scholar
  34. 34.
    Walkinshaw DR, Yang XJ (2008) Histone deacetylase inhibitors as novel anticancer therapeutics. Curr Oncol 15:237–243PubMedPubMedCentralGoogle Scholar
  35. 35.
    Blattmann C, Oertel S, Ehemann V, Thiemann M, Huber PE, Bischof M, Witt O, Deubzer HE, Kulozik AE, Debus J, Weber K-JJ (2010) Enhancement of radiation response in osteosarcoma and rhabdomyosarcoma cell lines by histone deacetylase inhibition. Int J Radiat Oncol Biol Phys 78:237–245. doi: 10.1016/j.ijrobp.2010.03.010 CrossRefPubMedGoogle Scholar
  36. 36.
    Camphausen K, Scott T, Sproull M, Tofilon PJ (2004) Enhancement of xenograft tumor radiosensitivity by the histone deacetylase inhibitor MS-275 and correlation with histone hyperacetylation. Clin Cancer Res 10:6066–6071. doi: 10.1158/1078-0432.CCR-04-0537 CrossRefPubMedGoogle Scholar
  37. 37.
    Chinnaiyan P, Vallabhaneni G, Armstrong E, Huang S-MM, Harari PM (2005) Modulation of radiation response by histone deacetylase inhibition. Int J Radiat Oncol Biol Phys 62:223–229. doi: 10.1016/j.ijrobp.2004.12.088 CrossRefPubMedGoogle Scholar
  38. 38.
    Entin-Meer M, Yang X, VandenBerg SR, Lamborn KR, Nudelman A, Rephaeli A, Haas-Kogan DA (2007) In vivo efficacy of a novel histone deacetylase inhibitor in combination with radiation for the treatment of gliomas. Neuro Oncol 9:82–88. doi: 10.1215/15228517-2006-032 CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Camphausen K, Cerna D, Scott T, Sproull M, Burgan WE, Cerra MA, Fine H, Tofilon PJ (2005) Enhancement of in vitro and in vivo tumor cell radiosensitivity by valproic acid. Int J Cancer 114:380–386. doi: 10.1002/ijc.20774 CrossRefPubMedGoogle Scholar
  40. 40.
    Chinnaiyan P, Cerna D, Burgan WE, Beam K, Williams ES, Camphausen K, Tofilon PJ (2008) Postradiation sensitization of the histone deacetylase inhibitor valproic acid. Clin Cancer Res 14:5410–5415. doi: 10.1158/1078-0432.CCR-08-0643 CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Detich N, Bovenzi V, Szyf M (2003) Valproate induces replication-independent active DNA demethylation. J Biol Chem 278:27586–27592. doi: 10.1074/jbc.M303740200 CrossRefPubMedGoogle Scholar
  42. 42.
    Van Nifterik KA, Van den Berg J, Slotman BJ, Lafleur MV, Sminia P, Stalpers LJ (2012) Valproic acid sensitizes human glioma cells for temozolomide and γ-radiation. J Neurooncol 107:61–67. doi: 10.1007/s11060-011-0725-z CrossRefPubMedGoogle Scholar
  43. 43.
    Matheu A, Klatt P, Serrano M (2005) Regulation of the INK4a/ARF locus by histone deacetylase inhibitors. J Biol Chem 280:42433–42441CrossRefPubMedGoogle Scholar
  44. 44.
    Idbaih A, Carvalho Silva R, Crinière E, Marie Y, Carpentier C, Boisselier B, Taillibert S, Rousseau A, Mokhtari K, Ducray F, Thillet J, Sanson M, Hoang-Xuan K, Delattre J-YY (2008) Genomic changes in progression of low-grade gliomas. J Neurooncol 90:133–140. doi: 10.1007/s11060-008-9644-z CrossRefPubMedGoogle Scholar
  45. 45.
    Watanabe T, Katayama Y, Yoshino A, Yachi K, Ohta T, Ogino A, Komine C, Fukushima T (2007) Aberrant hypermethylation of p14ARF and O6-methylguanine-DNA methyltransferase genes in astrocytoma progression. Brain Pathol 17:5–10CrossRefPubMedGoogle Scholar
  46. 46.
    Kramer OH, Zhu P, Ostendorff HP, Golebiewski M, Tiefenbach J, Peters MA, Brill B, Groner B, Bach I, Heinzel T, Gottlicher M (2003) The histone deacetylase inhibitor valproic acid selectively induces proteasomal degradation of HDAC2. EMBO J 22:3411–3420CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Lucio-Eterovic AK, Cortez MAA, Valera ET, Motta FJ, Queiroz RG, Machado HR, Carlotti CG, Neder L, Scrideli CA, Tone LG (2007) Differential expression of 12 histone deacetylase (HDAC) genes in astrocytomas and normal brain tissue: class II and IV are hypoexpressed in glioblastomas. BMC Cancer 8:243. doi: 10.1186/1471-2407-8-243 CrossRefGoogle Scholar
  48. 48.
    Santoro F, Botrugno OA, Dal Zuffo R, Pallavicini I, Matthews GM, Cluse L, Barozzi I, Senese S, Fornasari L, Moretti S, Altucci L, Pelicci PG, Chiocca S, Johnstone RW, Minucci S (2013) A dual role for Hdac1: oncosuppressor in tumorigenesis, oncogene in tumor maintenance. Blood 121:3459–3468. doi: 10.1182/blood-2012-10-461988 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Navid Redjal
    • 1
  • Clemens Reinshagen
    • 2
  • Andrew Le
    • 1
  • Brian P. Walcott
    • 1
  • Erin McDonnell
    • 3
  • Jorg Dietrich
    • 4
  • Brian V. Nahed
    • 1
  1. 1.Department of Neurosurgery, Massachusetts General HospitalHarvard Medical SchoolBostonUSA
  2. 2.Department of Radiology, Massachusetts General HospitalHarvard Medical SchoolBostonUSA
  3. 3.MGH Biostatistics Center, Massachusetts General HospitalHarvard Medical SchoolBostonUSA
  4. 4.Department of Neurology, Massachusetts General HospitalHarvard Medical SchoolBostonUSA

Personalised recommendations