Advertisement

New Forests

pp 1–16 | Cite as

In vitro serial subculture to improve rooting of Eucalyptus urophylla

  • Evânia Galvão MendonçaEmail author
  • Tânia Regina Batista
  • Vanessa Cristina Stein
  • Flávia Pereira Balieiro
  • José Renato de Abreu
  • Marinês Ferreira Pires
  • Patrícia Aparecida de Souza
  • Luciano Vilela Paiva
Article
  • 7 Downloads

Abstract

The aim of this study was to improve the rooting efficiency of Eucalyptus urophylla clones by in vitro reinvigoration/rejuvenation in two clones (02 and 04) from the breeding program of the V&M Florestal company. An in vitro culture began with 200 meristems of each clone, which were excised, disinfected, and inoculated in culture medium. When shoots from these first meristems inoculated reached a height of 3 cm, 100 new meristematic regions of 0.5 cm were isolated and inoculated in culture medium. The other shoots from were inoculated in a rooting medium, where they remained for 30 days. After this period, the plants were acclimatized and used as stock plants for shoot production in a commercial nursery. This process was repeated until the shoots attained an ex vitro rooting rate of more than 80%. After reinvigoration/rejuvenation of clones 02 and 04, the relationship between rooting and the presence of starch and phenolic compounds at the base of the minicuttings was histochemically analyzed. For clone 02, three in vitro subcultures were needed to increase the rooting rate, and for clone 04, only one in vitro subculture was required. In vitro reinvigoration/rejuvenation is a determining factor for greater rooting efficiency of minicuttings of 02 and 04 clones. Production of sclerenchyma fibers around the root vascular cylinder and starch and phenolic compound production are directly related to rooting efficiency.

Keywords

Phenolic compounds Rooting Anatomical barriers Rejuvenation Starch Clonal forestry 

Notes

Acknowledgements

Our thanks to the V&M Florestal company for donating the eucalypt plants used in this study and to the National Research Council (CNPq), Coordination for the Improvement of Personnel in Higher Education (Capes), and the Research Support Foundation of the State of Minas Gerais (FAPEMIG) for financial support.

Author contributions

All authors contributed equally to all parts of the development and revision of this work.

Compliance with ethical standards

Conflict of interest

The authors declare no conflicts of interest.

Supplementary material

11056_2019_9761_MOESM1_ESM.jpg (112 kb)
Fig. 1Rejuvenation of clone 02 from natural Eucalyptus urophylla, 21 days after pruning. Nursery plants (1), G1 (2), G2 (3), G3 (4), and G4 (5). (a) Tubette plants. (b) Plants without tubette. Scale bar – 2 cm. (JPEG 111 kb)
11056_2019_9761_MOESM2_ESM.jpg (107 kb)
Fig. 2Rejuvenation of clone 04 from natural Eucalyptus urophylla, 21 days after pruning. Nursery plants (1), G1 (2), G2 (3), and G3 (4). (a) Tubette plants. (b) Plants without tubette. Scale bar – 2 cm. (JPEG 107 kb)
11056_2019_9761_MOESM3_ESM.jpg (373 kb)
Fig. 3Cross sections of the base of Eucalyptus urophylla stem minicuttings from clone 02. (a) Nursery plants. (b) First subculture generation. (c) Second subculture generation. (d) Third subculture generation stained with safrablau solution. ep – epidermis. cx - cortex. sc - sclerenchyma. ph - phloema. xl - xylem. ss - secretory structure. mp - medullary parenchyma. (JPEG 372 kb)
11056_2019_9761_MOESM4_ESM.jpg (372 kb)
Fig. 4Cross sections of the base of Eucalyptus urophylla stem minicuttings from clone 04. (a) Nursery plants. (b) First subculture generation. (c) Second subculture generation. (d) Third subculture generation. ep – epidermis. cx - cortex. sc - sclerenchyma. ph - phloema. xl - xylem. mp - medullary parenchyma. (JPEG 372 kb)

References

  1. Abu-Abied M, Szwerdszarf D, Mordehaev I, Levy A, Rogovoy O, Belausov E, Yaniv Y, Uliel S, Katzenellenbogen M, Riov J, Ophir R, Sadot E (2012) Microarray analysis revealed upregulation of nitrate reductase in juvenile cuttings of Eucalyptus grandis, which correlated with increased nitric oxide production and adventitious root formation. Plant J 71:787–799PubMedCrossRefGoogle Scholar
  2. Alfenas AC, Zauza EAV, Mafia RG, Assis TF (eds) (2004) Clonagem e doenças do eucalipto. Viçosa, MGGoogle Scholar
  3. Assis TF, Fett-Neto AG, Alfenas AC (2004) Current techniques and pospects for the clonal propagation of hardwood with emphasis on Eucaliptus. In: Walter C, Carson M (eds) Plantation forest biotechnology for the 21st century. Research sign Post New Delhi, India, pp 303–333Google Scholar
  4. Aumond ML Jr, de Araujo AT, Jr Junkes CFO, Almeida MR, Matsuura HN, Costa F, Fett-Neto AG (2017) Events associated with early age-related decline in adventitious rooting competence of Eucalyptus globulus Labill. Front Plant Sci 8:1734PubMedCrossRefPubMedCentralGoogle Scholar
  5. Bellini C, Pacurar DI, Perrone I (2014) Adventitious roots and lateral roots: similarities and differences. Annu Rev Plant Biol 65:639–666PubMedCrossRefPubMedCentralGoogle Scholar
  6. Bryant P, Trueman S (2015) Stem anatomy and adventitious root formation in cuttings of Angophora, Corymbia and Eucalyptus. Forests 6:1227–1238CrossRefGoogle Scholar
  7. Bukatsch F (1972) Bemerkungen zur doppelfarbung astrablau-safranin. Mikrokosmos 61:255Google Scholar
  8. Burger LM, Richter HG (eds) (1991) Anatomia da madeira. Nobel, São PauloGoogle Scholar
  9. Castro EM, Pereira FJ, Paiva R (eds) (2009) Histologia Vegetal: Estrutura e Função de Órgãos Vegetativos. UFLA, LavrasGoogle Scholar
  10. Chen XW, Abdullah TL, Abdullah NAP, Hassan SA (2012) Rooting responses of miracle fruit (Synsepalum dulcificum) softwood cuttings as affected by indole butyric acid. Am J Agric Biol Sci 7:442–446CrossRefGoogle Scholar
  11. Cunha ACMCM, Paiva HN, Xavier A, Otoni WC (2009) Papel da Nutrição Mineral na Formação de Raízes Adventícias em Plantas Lenhosas. Pesqui Florest Bras 50:35–47Google Scholar
  12. Da Csosta CT, de Almeida MR, Ruedell CM, Schwambach J, Maraschin FS, Fett-Neto AG (2013) When stress and development go hand in hand: main hormonal controls of adventitious rooting in cuttings. Front Plant Sci 4:1–19Google Scholar
  13. De Klerk GJ, Krieken WVD, Jong JC (1999) The formation of adventitious roots: new concepts, new possibilities. In Vitro Cell Dev Biol Plant 35:189–199CrossRefGoogle Scholar
  14. de Paiva HN, Gomes JM (eds) (1993) Propagação vegetativa de espécies florestais. Imprensa Universitária, Minas GeraisGoogle Scholar
  15. Druege U, Zerche S, Kadner R, Ernst M (2000) Relationship between nitrogen status, carbohydrate distribution and subsequent rooting of Chrysanthemum cuttings as affected by pre-harvest nitrogen supply and cold-storage. Ann Bot 85:687–701CrossRefGoogle Scholar
  16. Druege U, Franken P, Hajirezaei MR (2016) Plant hormone homeostasis, signaling, and function during adventitious root formation in cuttings. Front Plant Sci 7:381PubMedCrossRefPubMedCentralGoogle Scholar
  17. Duarte MR, Debur MCS (2005) Stem and leaf morphoanatomy of Maytenus ilicifolia. Fitoterapia 76:41–49PubMedCrossRefGoogle Scholar
  18. Fachinello JC, Hoffmann A, Nachtigal JC (2005) Propagação de plantas frutíferas. Embrapa Informação Tecnológica, Brasília, p 221pGoogle Scholar
  19. Ferreira DF (2011) Sisvar: a computer statistical analysis system. Ciência Agroecol 35:1039–1042CrossRefGoogle Scholar
  20. Ferreira EM, Alfenas AC, Mafia RG, Leite HG, Sartorio RC, Filho RMP (2004) Determinação do tempo ótimo do enraizamento de miniestacas de clones de Eucalyptus spp. Rev Árvore 28:183–187CrossRefGoogle Scholar
  21. George EF, Sherrington PD (eds) (1984) Plant propagation by tissue culture. Exegetics, EversleyGoogle Scholar
  22. Hackett W (1988) Donor plant maturation and adventitious root formation. In: Davis TD, Haissig BE, Sankhla N (eds) Adventitious root formation in cuttings, vol 2. Dioscorides Press, Portland, pp 11–28Google Scholar
  23. Hartmann HT, De Kester, Davies FR, Geneve RL (eds) (2002) Plant propagation: principles and practices, 7th edn. Prentice-Hall, Upper Saddle RiverGoogle Scholar
  24. Huang LC, Lius S, Huang BL, Murashige T, Mahdi EFM, Gundy RV (1992) Rejuvenation of Sequoia sempervirens by repeated grafting of shoot tips onto juvenile rootstocks in vitro. Plant Physiol 98:166–173PubMedCrossRefPubMedCentralGoogle Scholar
  25. Husen A, Pal M (2007) Metabolic changes during adventitious root primordium development in Tectona grandis linn. f. (Teak) cuttings as affected by age of donor plants and auxin (IBA and NAA) treatment. New For 33:309–323CrossRefGoogle Scholar
  26. Iritani C, Soares RV, Gomes AV (1986) Aspectos morfológicos da aplicação de reguladores de crescimento nas estacas de Ilex paraguariensis St. Hilaire. Acta Biol Parana 15:21–46Google Scholar
  27. Jasik J, De Klerk GJ (1997) Anatomical and ultra-structural examination of adventitious root formation in stem slices of apple. Biol Plant 39:79–90CrossRefGoogle Scholar
  28. Jensen WA (ed) (1962) Botanical histochemistry: principles and practice. Freeman, San FranciscoGoogle Scholar
  29. Jesus MAS, Carvalho SP, Castro EM, Gomes CN (2010) Observações anatômicas em plantas de Coffea arabica L. obtidas por enraizamento de estacas. Rev Ceres 57:175–180CrossRefGoogle Scholar
  30. Johansen DA (ed) (1940) Plant microtechinique. New York, McGraw-Hill, New York. Jkertesz ZI. The pectic substances. Interscience, New YorkGoogle Scholar
  31. Kratz D, Wendling I, Pires PP (2012) Miniestaquia de Eucalyptus benthamii × E. dunnii em substratos a base de casca de arroz carbonizada. Sci For 40:547–556Google Scholar
  32. Li M, Leung DWM (2000) Starch accumulation is associated with adventitious root formation in hypocotyl cuttings of Pinus radiata. J Plant Growth Regul 19:423–428CrossRefGoogle Scholar
  33. Lima DM, Biasi LA, Zanette F, Zuffellato-Ribas KC, Bona C, Mayer JLS (2011) Capacidade de enraizamento de estacas de Maytenus muelleri Schwacke com a aplicação de ácido indolbutírico relacionada aos aspectos anatômicos. Revista Brasileira de Plantas Medicinais Botucatu 13:422–438CrossRefGoogle Scholar
  34. Ludwig-Müller J, Prinsen E, Rolfe SA, Scholes JD (2009) Metabolism and plant hormone action during clubroot disease. J Growth Regul 28:229–244CrossRefGoogle Scholar
  35. Maynard BOK, Bassuk NL (1988) Etiolation and banding effects on adventitious root formation. In: Davis TD, Haissig BE, Sankhla N (eds) Adventitious root formation in cuttings. Dioscorides Press, Portland, pp 29–46Google Scholar
  36. McCown DD, McCown BH (1987) North American Hardwoods. In: Bonga JM, Durzan DJ (eds) Cell and tissue culture in forestry Forestry sciences, vol 24–26. Springer, DordrechtGoogle Scholar
  37. Mokotedi ME, Watt M, Pammenter N (2010) Analysis of differences in field performance of vegetatively and seed-propagated Eucalyptus varieties II: vertical uprooting resistance. South For 72:31–36CrossRefGoogle Scholar
  38. Murashige T, Skoog F (1962) A revised medium for rapid growth and biossays with tobacco cultures. Physiol Plant 15:473–497CrossRefGoogle Scholar
  39. Negishi N, Nakahama K, Urata N, Kojima M, Sakakibara H, Kawaoka A (2014) Hormone level analysis on adventitious root formation in Eucalyptus globulus. New For 45:577–587CrossRefGoogle Scholar
  40. Negrelle RRB, Doni ME (2001) Efeito da maturidade dos ramos na formação de mudas de guaco por meio de estaquia. Hortic Bras 19:351–365CrossRefGoogle Scholar
  41. Ono EO, Rodrigues JD (eds) (1996) Aspectos da fisiologia do enraizamento de estacas caulinares. FUNEP, JaboticabalGoogle Scholar
  42. Pop TI, Pamfil D, Bellini C (2011) Auxin control in the formation of adventitious rooting. Not Bot Horti Agrobot Cluj 39:307–316CrossRefGoogle Scholar
  43. Shanthi K, Bachpai VKW, Anisha S, Ganesan M, Anithaa RG, Subashini V, Chakravarthi M, Sivakumar V, Yasodha R (2015) Micropropagation of Eucalyptus camaldulensis for the production of rejuvenated stock plants for microcuttings propagation and genetic fidelity assessment. New For 46:357–371CrossRefGoogle Scholar
  44. Souza CS, Freitas MLM, Moraes MLT, Sebbenn AM (2011) Estimativas de parâmetros genéticos para caracteres quantitativos em progênies de polinização aberta de Eucalyptus urophylla. Floresta 41:847–856Google Scholar
  45. Stevens ME, Pijut PM (2017) Origin of adventitious roots in black walnut (Juglans nigra) softwood cuttings rooted under optimized conditions in a fog chamber. New For 48:685–697CrossRefGoogle Scholar
  46. UTHSCSA image tool: image processing and analisis program: version 3.0. San Antonio: University of Texas, 2002. http://ddsdx.uthscsa.edu/dig/itdesc.html (30 janeiro 2012)
  47. Vilasboas J, Da Costa CT, Fett-Neto AG (2018). Rooting of eucalypt cuttings as a problem-solving oriented model in plant biology. Prog Biophys Mol Biol (in press, corrected proof)Google Scholar
  48. Wendling I, Xavier A (2005) Influência do ácido indolbutírico e da miniestaquia seriada no vigor radicular de clones de Eucalyptus grandis. Rev Árvore 29:681–689CrossRefGoogle Scholar
  49. Wendling I, Trueman SJ, Xavier A (2014) Maturation and related aspects in clonal forestry—part II: reinvigoration, rejuvenation and juvenility maintenance. New For 45:473–486CrossRefGoogle Scholar
  50. White J, Lowell PH (1984) The anatomy of root initiation in cuttings of Criselinia littoralis and Criselinia lucida. Ann Bot 54:7–20CrossRefGoogle Scholar
  51. Xavier A, Comércio J (1996) Microestaquia: uma maximização da micropropagação de Eucalyptus. Rev Árvore 20:9–16Google Scholar
  52. Xavier A, Wendling I, Silva RL (eds) (2013) Silvicultura clonal—princípios e técnicas. Editora UFV, ViçosaGoogle Scholar
  53. Zerche S, Druege U (2009) Nitrogen content determines adventitious rooting in Euphorbia pulcherrima under adequate light independently of pre-rooting carbohydrate depletion of cuttings. Sci Hortic 121:340–347CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Evânia Galvão Mendonça
    • 1
    Email author
  • Tânia Regina Batista
    • 2
  • Vanessa Cristina Stein
    • 3
  • Flávia Pereira Balieiro
    • 4
  • José Renato de Abreu
    • 5
  • Marinês Ferreira Pires
    • 6
  • Patrícia Aparecida de Souza
    • 1
  • Luciano Vilela Paiva
    • 6
  1. 1.Departamento de Ciências FlorestaisUniversidade Federal de São João del-ReiSete LagoasBrazil
  2. 2.Instituto de Pesquisas e Estudos FlorestaisPiracicabaBrazil
  3. 3.Laboratório de FarmacobotânicaUniversidade Federal de São João del-ReiDivinópolisBrazil
  4. 4.Centro de Tecnologia CanavieiraPiracicabaBrazil
  5. 5.Denpasa- Dendê do BrasilSanta Bárbara do ParáBrazil
  6. 6.Departamento de BiologiaUniversidade Federal de LavrasLavrasBrazil

Personalised recommendations