Advertisement

New Forests

pp 1–15 | Cite as

Dynamics and efficacy of sulfentrazone, flumioxazin, and isoxaflutole herbicides applied on eucalyptus harvest residues

  • Caio Antonio Carbonari
  • Giovanna Larissa Gimenes Cotrick Gomes
  • Fábio Henrique KrenchinskiEmail author
  • Plinio Saulo Simões
  • Edicarlos Batista de Castro
  • Edivaldo Domingues Velini
Article
  • 22 Downloads

Abstract

Eucalyptus harvests generate residues that remain on the soil and affect the efficacy of preemergent herbicides in the following planting cycle. The objective of this work was to evaluate the dynamics of flumioxazin, sulfentrazone, and isoxaflutole herbicides applied on different amounts and compositions of eucalyptus harvest residues subjected to different rainfall depths; and evaluate the weed control effectiveness of these herbicides when applied under these conditions. A LC–MS/MS system was used for the evaluations and the results showed that a cumulative rainfall of 50 mm was sufficient for the maximum removal of herbicides from the eucalyptus residues, regardless of the residue composition. The amount of the flumioxazin, sulfentrazone, and isoxaflutole herbicides that reached the soil was lower in the treatment with the highest amount of eucalyptus harvest residue used (40 Mg ha−1). The greatest amount of herbicide reaching the soil was found with the use of 15 Mg ha−1 of residues without presence of bark. The highest amount of residue used (40 Mg ha−1) reduced the control of Brachiaria decumbens by sulfentrazone and isoxaflutole. The control of Commelina benghalensis was inefficient (> 80%) in the treatment with 15 Mg ha−1 of residues without barks, regardless of the herbicide. Sulfentrazone controlled Ipomoea grandifolia (> 90%) under the evaluated residue conditions. Spermacoce latifolia and Sida rhombifolia were controlled by all herbicides in the evaluated residue conditions. Isoxaflutole controlled Panicum maximum in all residue conditions. The choice between the herbicides depends on the residue condition, rainfall regime, and weed species to be controlled.

Keywords

Preemergent herbicides Herbicide dynamics Soil cover Brachiaria decumbens Ipomoea grandifolia Panicum maximum 

Notes

Funding

This research was funded by the São Paulo Research Foundation (FAPESP) (Grant No. 2015/09390-1).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Alletto L, Benoit P, Bergheaud V, Coquet Y (2012) Variability of retention process of isoxaflutole and its diketonitrile metabolite in soil under conventional and conservation tillage. Pest Manag Sci 68:610–617.  https://doi.org/10.1002/ps.2304 CrossRefPubMedGoogle Scholar
  2. Banks PA, Robinson EL (1982) The influence of straw mulch on the soil reception and persistence of metribuzin. Weed Sci 30:164–168.  https://doi.org/10.1017/S0043174500062263 CrossRefGoogle Scholar
  3. Banks PA, Robinson EL (1986) Soil reception and activity of acetochlor, alachlor, and metolachlor as affected by wheat (Triticum aestivum) straw and irrigation. Weed Sci 34:607–611.  https://doi.org/10.1017/S0043174500067527 CrossRefGoogle Scholar
  4. Brendolan RA, Pellegrini MT, Da Costa Aguiar Alves PL (2000) Efeitos da nutrição mineral na competição inter e intraespecífica de Eucalyptus grandis e Brachiaria decumbens: 1—crescimento. Sci Florest 58:49–57Google Scholar
  5. Carbonari CA, Gomes GLGC, Velini ED (2009) Efeitos de períodos de permanência do flumioxazin no solo e na palha de milho e aveia na eficácia de controle de plantas daninhas. Rev Bras Herbic 8:85–95.  https://doi.org/10.7824/rbh.v8i3.71 CrossRefGoogle Scholar
  6. Carbonari CA, Velini ED, Silva JRM, Bentivenha SRP, Takahashi EM (2010) Eficácia da utilização de grânulos de argila como veículo para a aplicação aérea de sulfentrazone e isoxaflutole em área de implantação de eucalipto. Planta Daninha 28:207–212.  https://doi.org/10.1590/S0100-83582010000100024 CrossRefGoogle Scholar
  7. Carbonari CA, Gomes GL, Trindade ML, Silva JR, Velini ED (2016) Dynamics of sulfentrazone applied to sugarcane crop residues. Weed Sci 64:201–206.  https://doi.org/10.1614/WS-D-14-00171.1 CrossRefGoogle Scholar
  8. Cavenaghi AL, Rossi CVS, Negrisoli E, Costa EAD, Velini ED, Toledo REB (2007) Dinâmica do herbicida amicarbazone (Dinamic) aplicado sobre palha de cana-de-açúcar (Saccarum officinarum). Planta Daninha 25:831–837.  https://doi.org/10.1590/S0100-83582007000400020 CrossRefGoogle Scholar
  9. Correia NM, Camilo EH, Santos EA (2013a) Sulfentrazone efficiency on Ipomoea hederifolia and Ipomoea quamoclit as influenced by rain and sugarcane straw. Planta Daninha 31:165–174.  https://doi.org/10.1590/S0100-83582013000100018 CrossRefGoogle Scholar
  10. Correia NM, Gomes LP, Perussi FJ (2013b) Emergence of Rottboellia exaltata influenced by sowing depth, amount of sugarcane straw on the soil surface, and residual herbicide use. Acta Sci Agron 35:145–152.  https://doi.org/10.4025/actasciagron.v35i2.16086 CrossRefGoogle Scholar
  11. Costa AGF, Alves PLDCA, Pavani MDCMD (2002) Períodos de interferência de erva-quente (Spermacocea latifólia) no crescimento inicial de eucalipto (Eucalyptus grandis). Sci Florest 61:103–112Google Scholar
  12. Dinardo W, Toledo REB, Da Costa Aguiar Alves PL, Pitelli RA (2003) Efeito da densidade de plantas de Panicum maximum Jacq. sobre o crescimento inicial de Eucalyptus grandis W. Hill ex Maiden. Sci Florest 64:59–68Google Scholar
  13. Gatto A, Barros ND, Novais RD, Costa LD, Neves JCL (2003) Efeito do método de preparo do solo, em área de reforma, nas suas características, na composição mineral e na produtividade de plantações de Eucalyptus grandis. Rev Árvore 27:635–646CrossRefGoogle Scholar
  14. Gatto A, Barros NFD, Ferreira Novais R, Ribeiro da Silva I, Garcia Leite H, Palha Leite F, Albuquerque Villani EMD (2010) Estoques de carbono no solo e na biomassa em plantações de eucalipto. Rev Bras Ciênc Solo 34:1069–1079CrossRefGoogle Scholar
  15. Ghadiri H, Shea PJ, Wicks GA (1984) Interception and retention of atrazine by wheat (Triticum aestivum L.) stubble. Weed Sci 32:24–27.  https://doi.org/10.1017/S0043174500058458 CrossRefGoogle Scholar
  16. Jaremtchuk CC, Constantin J, Oliveira Júnior RS, Alonso DG, Arantes JGZ, Biffe DF, Roso AC, Cavalieri SD (2009) Efeito residual de flumioxazin sobre a emergência de plantas daninhas em solos de texturas distintas. Planta Daninha 27:191–196.  https://doi.org/10.1590/S0100-83582009000100024 CrossRefGoogle Scholar
  17. Lamoreaux RJ, Jain R, Hess FD (1993) Efficacy of dimethenamid, metolachlor and encapsulated alachlor in soil covered with crop residue. In: Proceedings of the Brighton crop protection conference, Weeds, vol 3, pp 1015–1020Google Scholar
  18. Lewis K, Tzilivakis J (2017) Development of a data set of pesticide dissipation rates in/on various plant matrices for the Pesticide Properties DataBase (PPDB). Data 28:1–8.  https://doi.org/10.3390/data2030028 CrossRefGoogle Scholar
  19. Lin CH, Lerch RN, Thurman EM, Garrett HE, George MF (2002) Determination of isoxaflutole (Balance) and its metabolites in water using solid phase extraction followed by high-performance liquid chromatography with ultraviolet or mass spectrometry. J Agric Food Chem 50:5816–5824.  https://doi.org/10.1021/jf025622d CrossRefPubMedGoogle Scholar
  20. Locke MA, Bryson CT (1997) Herbicide-soil interactions in reduced tillage and plant residue management systems. Weed Sci 45:307–320.  https://doi.org/10.1017/S0043174500092882 CrossRefGoogle Scholar
  21. Lopes GA, Brito JO, de Moura LF (2016) Uso energético de resíduos madeireiros na produção de cerâmicas no estado de São Paulo. Ciênc Florest 26:679–686CrossRefGoogle Scholar
  22. Machado AFL, Ferreira LR, Santos LDT, Santos JB, Ferreira FA, Viana RG (2009) Absorção, translocação e exsudação radicular de glyphosate em clones de eucalipto: clones. Planta Daninha 27:549–554.  https://doi.org/10.1590/S0100-83582009000300015 CrossRefGoogle Scholar
  23. Marchiori O Jr, Constantin J, Oliveira RS Jr, Inoue MH, Pivetta JP, Cavalieri SD (2005) Efeito residual de isoxaflutole após diferentes períodos de seca. Planta Daninha 23:491–499CrossRefGoogle Scholar
  24. Martinez CO, Silva CMM, Fay EF, Maia ADHN, Abakerli RB, Durrant LR (2008) Degradation of the herbicide sulfentrazone in a Brazilian Typic Hapludox soil. Soil Biol Biochem 40:879–886.  https://doi.org/10.1016/j.soilbio.2007.10.016 CrossRefGoogle Scholar
  25. Martinez CO, Silva CM, Fay EF, Abakerli RB, Maia AH, Durrant LR (2010) Microbial degradation of sulfentrazone in a brazilian rhodic hapludox soil. Braz J Microbiol 41:209–217.  https://doi.org/10.1590/S1517-83822010000100030 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Mitra S, Bhowmik PC, Xing B (1999) Sorption of isoxaflutole by five different soils varying in physical and chemical properties. Pestic Sci 55:935–942.  https://doi.org/10.1002/(SICI)1096-9063(199909)55:9%3c935:AID-PS33%3e3.0.CO;2-S CrossRefGoogle Scholar
  27. Mitra S, Bhowmik PC, Xing B (2000) Sorption and desorption of the diketonitrile metabolite of isoxaflutole in soils. Environ Pollut 108:183–190.  https://doi.org/10.1016/S0269-7491(99)00192-X CrossRefPubMedGoogle Scholar
  28. Olivette MPA, Castanho Filho EP, Sachs RCC, Nachiluk K, Martins R, Camargo FD, Oliveira LHDCL (2011) Evolução e prospecção da agricultura paulista: liberação da área de pastagem para o cultivo da cana-de-açúcar, eucalipto, seringueira e reflexos na pecuária, 1996–2030. Inf Econ 41:37–67Google Scholar
  29. Pallett KE, Little JP, Sheekey M, Veerasekaran P (1998) The mode of action of isoxaflutole. I. Physiological effects, metabolism, and selectivity. Pestic Biochem Physiol 62:113–124.  https://doi.org/10.1006/pest.1998.2378 CrossRefGoogle Scholar
  30. Ramanarayanan T, Narasimhan B, Srinivasan R (2005) Characterization of fate and transport of isoxaflutole, a soil-applied corn herbicide, in surface water using a watershed model. J Agric Food Chem 53:8848–8858.  https://doi.org/10.1021/jf0508596 CrossRefPubMedGoogle Scholar
  31. Reddy KN, Locke MA, Wagner SC, Zablotowicz RM, Gaston LA, Smeda RJ (1995) Chlorimuron ethyl sorption and desorption kinetics in soils and herbicide-desiccated cover crop residues. J Agric Food Chem 45:2752–2757.  https://doi.org/10.1021/jf00058a038 CrossRefGoogle Scholar
  32. Rodrigues BN (1993) The influence of straw mulch on the behaviour of the residual herbicides imazaquin and clomazone. Planta Daninha 11:21–28.  https://doi.org/10.1590/S0100-83581993000100004 CrossRefGoogle Scholar
  33. Rodrigues BN, Almeida FS (2011) Guia de herbicidas. Grafmarke, LondrinaGoogle Scholar
  34. Rodrigues BN, Lima JD, Yada IFU, Fornarolli DA (1999) Influence of the mulch on the behavior of sulfentrazone. Planta Daninha 17:445–458.  https://doi.org/10.1590/S0100-83581999000300011 CrossRefGoogle Scholar
  35. Rossi CVS, Velini ED, Luchini LC, Negrisoli E, Correa MR, Pivetta JP, Costa AGF, Silva FML (2013) Dinâmica do herbicida metribuzin aplicado sobre palha de cana-de-açúcar (Saccarum officinarum). Planta Daninha 31:223–230.  https://doi.org/10.1590/S0100-83582013000100024 CrossRefGoogle Scholar
  36. Shaner DL (2012) Field dissipation of sulfentrazone and pendimethalin in Colorado. Weed Technol 26:633–637.  https://doi.org/10.1614/WT-D-12-00037.1 CrossRefGoogle Scholar
  37. Shaner D, Jachetta J, Senseman S, Burke I, Hanson B, Jugulam M, Tan S, Glenn B, Turner P (2014) Herbicide Handbook. Weed Science Society of America, LawrenceGoogle Scholar
  38. Silva PV, Monquero PA (2013) Influência da palha no controle químico de plantas daninhas no sistema de cana crua. Rev Bras Herbic 12:94–103.  https://doi.org/10.7824/rbh.v12i1.235 CrossRefGoogle Scholar
  39. Simoni F, Victoria Filho R, San Martin HAM, Salvador FL, Alves ASR, Neto HB (2006) Eficácia de imazapic e sulfentrazone sobre Cyperus rotundus em diferentes condições de chuva e palha de cana-de-açúcar. Planta Daninha 24:769–778.  https://doi.org/10.1590/S0100-83582006000400018 CrossRefGoogle Scholar
  40. Taylor-Lovell S, Sims GK, Wax LM, Hassett JJ (2000) Hydrolysis and soil adsorption of the labile herbicide isoxaflutole. Environ Sci Technol 34:3186–3190.  https://doi.org/10.1021/es991382f CrossRefGoogle Scholar
  41. Taylor-Lovell S, Sims GK, Wax LM (2002) Effects of moisture, temperature, and biological activity on the degradation of isoxaflutole in soil. J Agric Food Chem 50:5626–5633.  https://doi.org/10.1021/jf011486l CrossRefPubMedGoogle Scholar
  42. Tofoli GR, Velini ED, Negrisoli E, Cavenaghi AL, Martins D (2009) Dinâmica do tebuthiuron em palha de cana-de-açúcar. Planta Daninha 27:815–821.  https://doi.org/10.1590/S0100-83582009000400020 CrossRefGoogle Scholar
  43. Toledo REB (1998) Efeitos da faixa de controle e dos períodos de controle e de convivência de Brachiaria decumbens Stapf no desenvolvimento inicial de plantas de Eucalyptus grandis. Dissertation, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São PauloGoogle Scholar
  44. Toledo REB, Victoria Filho R, Da Costa Aguiar Alves PL, Pitelli RA, Lopes MAF (2003) Faixas de controle de plantas daninhas e seus reflexos no crescimento de plantas de eucalipto. Sci Florest 64:78–92Google Scholar
  45. Vidal RA (2002) Ação dos herbicidas. R.A. Vidal, Porto AlegreGoogle Scholar
  46. Viviani F, Little JP, Pallet KE (1998) The mode of action of isoxaflutole. II. Characterization of the inhibition of carrot 4-hydroxyphenylpyruvate dioxygenase by the diketonitrile derivative of isoxaflutole. Pestic Biochem Physiol 62:125–134.  https://doi.org/10.1006/pest.1998.2375 CrossRefGoogle Scholar
  47. Watts DW, Hall JK (1996) Tillage and application effects on herbicide leaching and runoff. Soil Tillage Res 39:241–257.  https://doi.org/10.1016/S0167-1987(96)01058-6 CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.School of Agriculture of the São Paulo State University (Unesp)BotucatuBrazil

Personalised recommendations