Advertisement

New Forests

pp 1–20 | Cite as

Aboveground biomass, transpiration and water use efficiency in eucalypt plantation fertilized with KCl, NaCl and phonolite rock powder

  • Fábio Henrique S. F. de ToledoEmail author
  • José Leonardo de Moraes Gonçalves
  • Yesid Alejandro Mariño
  • Alexandre de Vicente Ferraz
  • Eric Victor de Oliveira Ferreira
  • Gabriela Gonçalves Moreira
  • Rodrigo Hakamada
  • José Carlos de Arthur Júnior
Article
  • 59 Downloads

Abstract

Potassium has important physiological functions in eucalypt plantations, increasing their productivity when applied to soil via mineral fertilizers. There is interest in identifying alternative sources to KCl owing to its high cost and limited reserves. The aim of the study was to test the effect of replacing KCl with NaCl and phonolite rock powder. Two comparisons were made: (1) application of 283 kg ha−1 of KCl compared with that of 2125 kg ha−1 of phonolite rock powder (equivalent to 170 kg ha−1 of K2O in both treatments); (2) application of 139 kg ha−1 of NaCl compared with that of 183 kg ha−1 of KCl (equivalent to 2.33 kmol Na and K, respectively). Radial growth, soil water content, leaf water potential (Ψ), accumulated transpiration, stem volume and biomass increment, as well as water use efficiency (WUE) were evaluated. In the first comparison, both fertilizations presented equal values for all characteristics evaluated. In the second, the accumulated transpiration in trees fertilized with KCl was 17% higher than that in plants fertilized with NaCl. In contrast, the WUE was 20% higher in the trees fertilized with NaCl than in those fertilized with KCl, reflecting the lower water consumption for the same increment in stem volume and biomass. We conclude that phonolite rock powder and NaCl are possible substitutes for conventional K fertilization performed with KCl.

Keywords

Potassium Beneficial element Rocks for crops Ecophysiology Transpiration 

Notes

Acknowledgements

The authors would like to acknowledge CAPES and FAPESP for funding the project through scholarships and to CNPq for project financing (No. 406809/2016-0) and postdoctoral scholarship (No. 150505/2014-0). We are also grateful for the financing of part of the project by Mineração Curimbaba S.A., for permission to conduct research in the study area and logistical support of International Paper, and for the technical and administrative support of the Forest Science and Research Institute (IPEF). The first author thanks Cindy Prescott and Robert Guy for their hospitality and academic discussions during the author’s study-exchange stay at the University of British Columbia (UBC), Canada (CAPES-BEX6286/15-1).

References

  1. Almeida JCR, Laclau JP, Gonçalves JLM, Ranger J, Saint-André L (2010) A positive growth response to NaCl applications in Eucalyptus plantations established on K-deficit soils. For Ecol Manag 259:1786–1795.  https://doi.org/10.1016/j.foreco.2009.08.032 CrossRefGoogle Scholar
  2. Alvares CA, Stape JL, Sentelhas PC, Gonçalves JLM, Sparovek G (2013) Köppen’s climate classification map for Brazil. Meteorol Z 22:711–728.  https://doi.org/10.1127/0941-2948/2013/0507 CrossRefGoogle Scholar
  3. Bassaco MVM, Motta ACV, Pauletti V, Prior SA, Nisgoski S, Ferreira CF (2018) Nitrogen, phosphorus, and potassium requirements for Eucalyptus urograndis plantations in southern Brazil. New For 49:681–697.  https://doi.org/10.1007/s11056-018-9658-0 CrossRefGoogle Scholar
  4. Battie-Laclau P, Laclau JP, Piccolo MC, Arenque BC, Beri C, Mietton L, Muniz MRA, Jordan-Meille L, Buckeridge MS, Nouvellon Y, Ranger J, Bouillet JP (2013) Influence of potassium and sodium nutrition on leaf area components in Eucalyptus grandis trees. Plant Soil 371:19–35.  https://doi.org/10.1007/s11104-013-1663-7 CrossRefGoogle Scholar
  5. Battie-Laclau P, Laclau JP, Beri C, Mietton L, Muniz MRA, Arenque BC, Piccolo MC, Jordan-Meille L, Bouillet JP, Nouvellon Y (2014a) Photosynthetic and anatomical responses of Eucalyptus grandis leaves to potassium and sodium supply in a field experiment. Plant Cell Environ 37:70–81.  https://doi.org/10.1111/pce.12131 CrossRefPubMedGoogle Scholar
  6. Battie-Laclau P, Laclau JP, Domec JC, Christina M, Bouillet JP, Piccolo MC, Gonçalves JLM, Moreira RM, Krusche AV, Bouvet JM, Nouvellon Y (2014b) Effects of potassium and sodium supply on drought-adaptive mechanisms in Eucalyptus grandis plantations. New Phytol 203:401–413.  https://doi.org/10.1111/nph.12810 CrossRefPubMedGoogle Scholar
  7. Battie-laclau P, Rojas JSD, Christina M, Nouvellon Y, Bouillet JP, Piccolo MC, Moreira MZ, Gonçalves JLM, Roupsard O, Laclau JP (2016) Potassium fertilization increases water-use efficiency for stem biomass production without affecting intrinsic water-use efficiency in Eucalyptus grandis plantations. For Ecol Manag 364:77–89.  https://doi.org/10.1016/j.foreco.2016.01.004 CrossRefGoogle Scholar
  8. Briskin DP, Bloom A (2013) Nutrição mineral. In: Taiz L, Zeiger E (eds) Fisiologia vegetal. Artmed, Porto AlegreGoogle Scholar
  9. Broadley M, Brown P, Cakmak I, Ma JF, Rengel Z, Zhao F (2012) Beneficial elements. In: Marschner H (ed) Mineral nutrition of higher plants. Elsevier, LondonGoogle Scholar
  10. Camargo OA, Moniz AC, Jorge JA, Valadares JMAS (2009) Métodos de Análise Química. Mineralógica e Física de Solos do Instituto Agronômico de Campinas, IAC, CampinasGoogle Scholar
  11. Christina M, Laclau JP, Gonçalves JLM, Jourdan C, Nouvellon Y, Bouillet JP (2011) Almost symmetrical vertical growth rates above and below ground in one of the world’s most productive forests. Ecosphere 2:1–10.  https://doi.org/10.1890/ES10-00158.1 CrossRefGoogle Scholar
  12. Christina M, Maire G, Battie-Laclau P, Nouvellon Y, Bouillet JP, Jourdan C, Gonçalves JLM, Laclau JP (2015) Measured and modeled interactive effects of potassium deficiency and water deficit on gross primary productivity and light-use efficiency in Eucalyptus grandis plantations. Glob Change Biol 21:2022–2039.  https://doi.org/10.1111/gcb.12817 CrossRefGoogle Scholar
  13. Cortes GP, Ferreira RC, Cortes GP, Rampazzo L, Ferreira LC (2010) Fonolito como substituto do cloreto de potássio e/ou outras fontes de potássio na agricultura e pecuária no brasil. In: 1º Congresso Brasileiro de Rochagem, BrasíliaGoogle Scholar
  14. DNPM (2016) Sumário mineral. Departamento Nacional de Produção Mineral, DNPM, Rio de JaneiroGoogle Scholar
  15. Erel R, Ben-Gal A, Dag A, Schwartz A, Yermiyahu U (2014) Sodium replacement of potassium in physiological processes of olive trees (var. Barnea) as affected by drought. Tree Physiol 34:1102–1117.  https://doi.org/10.1093/treephys/tpu081 CrossRefPubMedGoogle Scholar
  16. FAO (2017) World fertilizer trends andoutlook 2020. Food and Agriculture Organization, RomeGoogle Scholar
  17. Faria GE, Barros NF, Novais RF, Lima JC, Teixeira JL (2002) Yield and nutritional status of coppiced Eucalyptus stands as affected by potassium applied at planting time. Rev Árvore 26:577–584.  https://doi.org/10.1590/S0100-67622002000500008 CrossRefGoogle Scholar
  18. Fernandes FRC, Luz AB, Castilhos ZC (2010) Agrominerais para o Brasil. CETEM/MCT, Rio de JaneiroGoogle Scholar
  19. Fisher RF, Binkley D (2000) Ecology and management of forest soils. Wiley, New York, p 489Google Scholar
  20. Forrester DI (2013) Growth responses to thinning, pruning and fertilizer application in Eucalyptus plantations: a review of their production ecology and interactions. For Ecol Manag 310:336–347.  https://doi.org/10.1016/j.foreco.2013.08.047 CrossRefGoogle Scholar
  21. Fromm J (2010) Wood formation of trees in relation to potassium and calcium nutrition. Tree Physiol 30:1140–1147.  https://doi.org/10.1093/treephys/tpq024 CrossRefPubMedGoogle Scholar
  22. Fuchs S, Leuschner C, Link R, Coners H, Schuldt B (2017) Calibration and comparison of thermal dissipation, heat ratio and heat field deformation sap flow probes for diffuse-porous trees. Agric For Meteorol 244–245:151–156.  https://doi.org/10.1016/j.agrformet.2017.04.003 CrossRefGoogle Scholar
  23. Gattward JN, Almeida AAF, Souza Junior JO, Gomes FP, Kronzucker HJ (2012) Sodium–potassium synergism in Theobroma cacao: stimulation of photosynthesis, water-use efficiency and mineral nutrition. Physiol Plant 146:350–362.  https://doi.org/10.1111/j.1399-3054.2012.01621.x CrossRefPubMedGoogle Scholar
  24. Gomes FP, Garcia CH (1993) A determinação de equações volumétricas na engenharia florestal. IPEF, PiracicabaGoogle Scholar
  25. Gonçalves JLM (2011) Fertilização de Plantação de Eucalipto. In: Gonçalves JLM, Pulito AP, Arthur JC Jr, Silva LD (eds) Encontro brasileiro de Silvicultura. PTSM/IPEF/FUPEF, PiracicabaGoogle Scholar
  26. Gonçalves JLM, Stape JL, Laclau JP, Bouillet JP, Ranger J (2008) Assessing the effects of early silvicultural management on long-term site productivity of fast-growing eucalypt plantations: the Brazilian experience. South For J For Sci 70:105–118.  https://doi.org/10.2989/SOUTH.FOR.2008.70.2.6.534 CrossRefGoogle Scholar
  27. Gonçalves JLM, Alvares CA, Higa AR, Silva LD, Alfenas AC, Stahl J, Ferraz SFB, Lima WP, Brancalion PHS, Hubner A, Bouillet JPD, Laclau JP, Nouvellon Y, Epron D (2013) Integrating genetic and silvicultural strategies to minimize abiotic and biotic constraints in Brazilian eucalypt plantations. For Ecol Manag 301:6–27.  https://doi.org/10.1016/j.foreco.2012.12.030 CrossRefGoogle Scholar
  28. Granier A (1985) Une nouvelle méthode pour la mesure du flux de sève brute dans le tronc des arbres. Ann Sci For 42:193–200CrossRefGoogle Scholar
  29. Hakamada R, Hubbard RM, Ferraz S, Stape JL, Lemos C (2017) Biomass production and potential water stress increase with planting density in four highly productive clonal Eucalyptus genotypes. South For J For Sci 79:251–257.  https://doi.org/10.2989/20702620.2016.1256041 CrossRefGoogle Scholar
  30. Hubbard RM, Stape J, Ryan MG, Almeida AC, Rojas J (2010) Effects of irrigation on water use and water use efficiency in two fast growing Eucalyptus plantations. For Ecol Manag 259:1714–1721.  https://doi.org/10.1016/j.foreco.2009.10.028 CrossRefGoogle Scholar
  31. IBA (2017) Relatório anual 2017. Indústria Brasileira de Árvores, Brazilian Tree Industry (IBÁ)Google Scholar
  32. Kang JJ, Zhao WZ, Zhao M, Zheng Y, Yang F (2015) NaCl and Na2SiO3 coexistence strengthens growth of the succulent xerophyte Nitraria tangutorum under drought. Plant Growth Regul 77:223–232.  https://doi.org/10.1007/s10725-015-0055-9 CrossRefGoogle Scholar
  33. Kronzucker HJ, Coskun D, Schulze LM, Wong JR, Britto DT (2013) Sodium as nutrient and toxicant. Plant Soil 369:1–23.  https://doi.org/10.1007/s11104-013-1801-2 CrossRefGoogle Scholar
  34. Laclau JP, Almeida JCR, Gonçalves JLM, Saint-André L, Ventura M, Ranger J, Moreira RM, Nouvellon Y (2009) Influence of nitrogen and potassium fertilization on leaflifespan and allocation of above-ground growth in Eucalyptus plantations. Tree Physiol 29:111–124.  https://doi.org/10.1093/treephys/tpn010 CrossRefGoogle Scholar
  35. Laclau JP, Silva EA, Lambais GR, Bernoux M, Maire G, Stape JL, Bouillet JP, Gonçalves JLM, Jourdan C, Nouvellon Y (2013) Dynamics of soil exploration by fine roots down to a depth of 10 m throughout the entire rotation in Eucalyptus grandis plantations. Front Plant Sci 4:1–12.  https://doi.org/10.3389/fpls.2013.00243 CrossRefGoogle Scholar
  36. Ma Q, Yue LJ, Zhang JL, Wu GQ, Bao AK, Wang SM (2012) Sodium chloride improves photosynthesis and water status in the succulent xerophyte Zygophyllum xanthoxylum. Tree Physiol 32:4–13.  https://doi.org/10.1093/treephys/tpr098 CrossRefPubMedGoogle Scholar
  37. Marcar NE, Guo J, Crawford DF (1999) Response of Eucalyptus camaldulensis Dehnh., E. globulus Labill. ssp. globulus and E. grandis W.Hill to excess boron and sodium chloride. Plant Soil 208:251–257.  https://doi.org/10.1023/A:1004594028069 CrossRefGoogle Scholar
  38. Marengo JA, Alves LM (2015) Crise hídrica em São Paulo em 2014: seca e desmatamento. Geousp Espaço e Tempo 19:485–494.  https://doi.org/10.11606/issn.2179-0892.geousp.2015.100879 CrossRefGoogle Scholar
  39. Martins V, Silva DRG, Marchi G, Leite MCA, Martins ES, Gonçalves ASF, Guilherme LRG (2015) Effect of alternative multinutrient sources on soil chemical properties. Rev Bras Cienc Solo 39:194–204.  https://doi.org/10.1590/01000683rbcs20150587 CrossRefGoogle Scholar
  40. Melo EASC, Gonçalves JLM, Rocha JHT, Hakamada RE, Bazani JH, Wenzel AVA, Arthur Junior JC, Borges JS, Malheiros R, Lemos CCZ, Ferreira EVO, Ferraz AV (2016) Responses of clonal eucalypt plantations to N, P and K fertilizer application in different edaphoclimatic conditions. Forests 7:1–15.  https://doi.org/10.3390/f7010002 CrossRefGoogle Scholar
  41. Ninyerola M, Pons X, Roure JM (2000) A methodological approach of climatological modelling of air temperature and precipitation through GIS techniques. Int J Climatol 20:1823–1841.  https://doi.org/10.1002/1097-0088(20001130)20:14%3c1823:AID-JOC566%3e3.0.CO;2-B CrossRefGoogle Scholar
  42. Qureshi TM, Ashraf MY, Bano A, Hussain F (2007) Ion partitioning, K/Ca and K/Na ratios of Eucalyptus camaldulensis grown under NaCl salinity. Pak J Bot 39:2565–2574Google Scholar
  43. Raij BV, Andrade JC, Cantarella H, Quaggio JA (2001) Análise Química Para Avaliação da Fertilidade de Solos Tropicais. IAC, CampinasGoogle Scholar
  44. Robinson N, Harper RJ, Smettem KRJ (2006) Soil water depletion by Eucalyptus spp. integrated into dryland agricultural systems. Plant Soil 286:141–151.  https://doi.org/10.1007/s11104-006-9032-4 CrossRefGoogle Scholar
  45. Santos HG, Jacomine PKT, Anjos LHC, Oliveira VA, Lumbreras JF, Coelho MR, Almeida JA, Cunha TJF, Oliveira JB (2013) Sistema Brasileiro de Classificação de Solos. Embrapa, BrasiliaGoogle Scholar
  46. Scolforo JRS, Thiersch CR (2004) Biometria florestal: medição, volumetria e gravimetria. UFLA/FAEPE, LavrasGoogle Scholar
  47. Sette CR Jr, Tomazello Filho M, Dias CTS, Laclau JP (2010) Growth in diameter of Eucalyptus grandis W. Hill. ex Maiden trees and relationship with climatic variables and mineral fertilization. Rev Árvore 34:979–990.  https://doi.org/10.1590/S0100-67622010000600003 CrossRefGoogle Scholar
  48. Shoemaker HE, McLean EO, Pratt PF (1961) Buffer methods for determination of lime requirements of soils with appreciable amount of exchangeable aluminum. Soil Sci Soc Am Proc 25:274–277.  https://doi.org/10.2136/sssaj1961.03615995002500040014x CrossRefGoogle Scholar
  49. Silva EA, Cassiolato AMR, Maltoni KL, Scabora MH (2008) Effects of ground basalt and organic residues on the chemical and microbiological aspects on bare subsoil and on the growth of Astronium fraxinifolium Schott. Rev Árvore 32:323–333.  https://doi.org/10.1590/S0100-67622008000200015 CrossRefGoogle Scholar
  50. Silva DRG, Marchi G, Spehar CR, Guilherme LRG, Rein TA, Soares DA, Avila FW (2012) Characterization and nutrient release from silicate rocks and influence on chemical changes in soil. Rev Bras Cienc Solo 36:951–962.  https://doi.org/10.1590/S0100-06832012000300025 CrossRefGoogle Scholar
  51. Silva PHM, Poggiani F, Libardi PL, Gonçalves AN (2013) Fertilizer management of eucalypt plantations on sandy soil in Brazil: initial growth and nutrient cycling. For Ecol Manag 301:67–78.  https://doi.org/10.1016/j.foreco.2012.10.033 CrossRefGoogle Scholar
  52. Snowdon P (2002) Modeling Type 1 and Type 2 growth responses in plantations after application of fertilizer or other silvicultural treatments. For Ecol Manag 163:229–244.  https://doi.org/10.1016/S0378-1127(01)00582-5 CrossRefGoogle Scholar
  53. Stape JL, Binkley D, Ryan MG (2004a) Eucalyptus production and the supply, use and efficiency of use of water, light and nitrogen across a geographic gradient in Brazil. For Ecol Manag 193:17–31.  https://doi.org/10.1016/j.foreco.2004.01.020 CrossRefGoogle Scholar
  54. Stape JL, Binkley D, Ryan MG, Gomes AN (2004b) Water use, water limitation, and water use efficiency in a Eucalyptus plantation. Bosque 25:35–41CrossRefGoogle Scholar
  55. Subbarao GV, Ito O, Berry WL, Wheeler RM (2003) Sodium: a functional plant nutrient. Crit Rev Plant Sci 22:391–416.  https://doi.org/10.1080/07352680390243495 CrossRefGoogle Scholar
  56. Tatagiba SD, Pezzopane JEM, Reis EF, Dardengo MCJD, Effgen TAM (2007) Physiologic behavior of two clones of Eucalyptus in dry and rainy season. Cerne 13:149–159Google Scholar
  57. Tatagiba SD, Pezzopane JEM, Reis EF (2015) Photosynthesis in Eucalyptus under different environmental conditions. Eng Agric 23:336–345.  https://doi.org/10.13083/reveng.v23i4.573 CrossRefGoogle Scholar
  58. Tedersoo L, May TW, Smith ME (2010) Ectomycorrhizal lifestyle in fungi: global diversity, distribution, and evolution of phylogenetic lineages. Mycorrhiza 20:217–263.  https://doi.org/10.1007/s00572-009-0274-x CrossRefPubMedGoogle Scholar
  59. Teixeira AMS, Sampaio JA, Garrido FMS, Medeiros ME (2012) Evaluation of phonolite rock as a potassium fertilizer alternative. Holos 5:21–33.  https://doi.org/10.15628/holos.2012.1102 CrossRefGoogle Scholar
  60. Teixeira AMS, Garrido FMS, Medeiros ME, Sampaio JA (2015) Effect of thermal treatments on the potassium and sodium availability in phonolite rock powder. Int J Miner Process 145:57–65.  https://doi.org/10.1016/j.minpro.2015.07.002 CrossRefGoogle Scholar
  61. Thornthwaite CW, Mather JR (1955) The water balance. Publ Climatol Lab Climatol Dresel Inst Technol 8:1–104Google Scholar
  62. Whitehead D, Beadle CL (2004) Physiological regulation of productivity and water use in Eucalyptus: a review. For Ecol Manag 193:113–140.  https://doi.org/10.1016/j.foreco.2004.01.026 CrossRefGoogle Scholar
  63. Wilpert K, Lukes M (2003) Ecochemical effects of phonolite rock powder, dolomite and potassium sulfate in a spruce stand on an acidified glacial loam. Nutr Cycl Agroecosyst 65:115–127.  https://doi.org/10.1023/A:1022103325310 CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Fábio Henrique S. F. de Toledo
    • 1
    Email author
  • José Leonardo de Moraes Gonçalves
    • 2
  • Yesid Alejandro Mariño
    • 2
  • Alexandre de Vicente Ferraz
    • 3
  • Eric Victor de Oliveira Ferreira
    • 4
  • Gabriela Gonçalves Moreira
    • 2
  • Rodrigo Hakamada
    • 5
  • José Carlos de Arthur Júnior
    • 6
  1. 1.Department of Forest ScienceFederal University of LavrasLavrasBrazil
  2. 2.Department of Forest ScienceUniversity of São PauloPiracicabaBrazil
  3. 3.Forest Science and Research InstitutePiracicabaBrazil
  4. 4.Federal Rural University of AmazoniaCapitão PoçoBrazil
  5. 5.Department of Forest ScienceFederal University of PernambucoRecifeBrazil
  6. 6.Forest InstituteFederal Rural University of Rio de JaneiroSeropédicaBrazil

Personalised recommendations