New Forests

pp 1–16 | Cite as

Production and establishment techniques for the restoration of Nothofagus alessandrii, an endangered keystone species in a Mediterranean forest

  • Manuel Acevedo
  • Carolina ÁlvarezEmail author
  • Eduardo Cartes
  • R. Kasten Dumroese
  • Marta González


Ruil (Nothofagus alessandrii) is an endangered keystone species from the Mediterranean climate zone of Chile. Ruil’s fragile state of conservation urges development of restoration programs, but specific protocols for nursery production and field establishment that ensure plant survival are largely unknown. Therefore, we examined the effect on nitrogen (N) fertilization and container size during nursery production in combination with the use of mesh shelters after outplanting on survival and growth during the first growing season in the field. First year outplanting survival of nursery-grown container seedlings was enhanced when seedlings were given nitrogen (N) during nursery production and deployed with mesh tree shelters in the field. The volume of the container had no effect on outplanting survival and growth. Increasing N from zero to 200 mg N L−1 provided sufficient N levels, resulting in increased seedling height, root-collar diameter, shoot biomass, and total seedling N and phosphorous concentrations. Additional N provided by the 400 and 600 mg N L−1 treatments underwent luxury consumption by the seedlings with no further benefits in field performance. Improved growth in the nursery, along with the use of mesh tree shelters after outplanting, especially during the typical summer drought, may be responsible for increased survival during the first growing season. Increasing the performance of nursery-grown ruil seedlings is essential to restoring this endangered, vulnerable, and foundation species within the highly biodiverse, yet seriously threatened endemic Maulino Costero Forest of the Mediterranean climate of central Chile.


Container volume Mediterranean climate Nitrogen fertilization Outplanting performance Ruil Tree shelter 



We thank the National Forestry Corporation Native Forest Research Fund and Arauco S.A. enterprises for funding this work through the project “Valorización de Prácticas Silviculturales para la Regeneración de Bosques de Preservación de Ruil” (017/2012). We also thank Iván Quiroz for his valuable help.


  1. Ahrends A, Burgess ND, Milledge SAH et al (2010) Predictable waves of sequential forest degradation and biodiversity loss spreading from an African city. Proc Natl Acad Sci USA 107:14556–14561CrossRefGoogle Scholar
  2. Amigo J, Ramírez C (1998) A bioclimatic classification of Chile: woodland communities in the temperate zone. Plant Ecol 136:9–26CrossRefGoogle Scholar
  3. Armesto JJ, Casassa I, Dollenz O (1992) Age structure and dynamics of Patagonian beech forests in Torre del Paine National Park, Chile. Vegetation 98:13–22CrossRefGoogle Scholar
  4. Armesto JJ, Aravena JC, Villagrán C, Pérez C, Parker G (1996) Ecología de los bosques nativos de Chile. Editorial Universitaria, SantiagoGoogle Scholar
  5. Bainbridge D (1994) Tree shelters improve establishment on dry sites. Tree Plant Notes 45:13–16Google Scholar
  6. Barstow M, Echeverría C, Baldwin H, Rivers MC (2017) Nothofagus alessandrii. The IUCN Red List of Threatened Species 2017: e.T32033A2808995.
  7. Becerra PI, Gonzalez-Rodriguez V, Smith-Ramirez C, Armesto JJ (2011) Spatio-temporal variation in the effect of herbaceous layer on woody seedling survival in a Chilean Mediterranean ecosystem. J Veg Sci 22:847–855CrossRefGoogle Scholar
  8. Bellot J, Ortiz de Urbina JM, Bonet A, Sánchez JR (2002) The effect of tree shelters on the growth of Quercus coccifera L. seedlings in a semiarid environment. Forestry 75:89–106CrossRefGoogle Scholar
  9. Bergez JF, Dupraz C (2000) Effect of ventilation on growth of Prunus avium seedlings grown in treeshelters. Agric Forest Meteorol 104:199–214CrossRefGoogle Scholar
  10. Bergez JF, Dupraz C (2009) Radiation and thermal microclimate in tree shelter. Agric Forest Meteorol 149:179–186CrossRefGoogle Scholar
  11. Bustamante RO, Castor C (1998) The decline of an endangered temperate ecosystem: the ruil (Nothofagus alessandrii) forest in central Chile. Biodivers Conserv 7:1607–1626CrossRefGoogle Scholar
  12. Bustos F, González ME, Donoso P, Gerding V, Donoso C, Escobar B (2008) Effects of different doses of slow-release fertilizer (Osmocote) in the development of coigüe, raulí and ulmo seedlings. Bosque 29:155–161CrossRefGoogle Scholar
  13. Butchart SHM, Walpole M, Collen B, Scharlemann J, Baillie J et al (2010) Global biodiversity: indicators and recent declines. Science 328:1164–1168CrossRefGoogle Scholar
  14. Chaar H, Mechergui T, Khouaja A, Abid H (2008) Effect of tree shelters and polyethylene mulch sheets on survival and growth of cork oak (Quercus suber L.) seedlings planted in northwestern Tunisia. Forest Ecol Manag 256:722–731CrossRefGoogle Scholar
  15. Chilean Agriculture Ministry (1995) Supreme Decret 13. Santiago, ChileGoogle Scholar
  16. Clapp R (1995) The unnatural history of the Monterey pine. Geogr Rev 85:1–19CrossRefGoogle Scholar
  17. Close DC, Ruthrof KX, Turner S, Rokich DP, Dixon KW (2009) Ecophysiology of species with distinct leaf morphologies: effects of plastic and shadecloth tree guards. Restor Ecol 17:33–41CrossRefGoogle Scholar
  18. Coopman RE, Jara JC, Bravo LA, Sáez KL, Mella GR, Escobar R (2008) Changes in morpho-physiological attributes of Eucalyptus globulus plants in response to different drought hardening treatments. Electron J Biotechnol 11:1–10CrossRefGoogle Scholar
  19. Cortina J, Vilagrosa A, Trubat R (2013) The role of nutrients for improving seedling quality in drylands. New Forest 44:719–732CrossRefGoogle Scholar
  20. Cuesta B, Villar-Salvador P, Puértolas J, Jacobs DF, Rey Benayas JM (2010) Why do large, nitrogen rich seedlings better resist stressful transplanting conditions? A physiological analysis in two functionally contrasting Mediterranean forest species. Forest Ecol Manag 260:71–78CrossRefGoogle Scholar
  21. DeFries RS, Rudel T, Uriarte M, Hansen M (2010) Deforestation driven by urban population growth and agricultural trade in the twenty-first century. Nat Geosci 3:178–181CrossRefGoogle Scholar
  22. del Campo AD, Navarro RM, Aguilella A, González E (2006) Effect of tree shelter design on water condensation and run-off and its potential benefit for reforestation establishment in semiarid climates. Forest Ecol Manag 235:107–115CrossRefGoogle Scholar
  23. del Campo AD, Navarro RM, Ceacero CJ (2010) Seedling quality and field performance of commercial stocklots of containerized holm oak (Quercus ilex) in Mediterranean Spain: an approach for establishing a quality standard. New Forest 39:17–37Google Scholar
  24. Devine W, Harrington CA (2008) Influence of four tree shelter types on microclimate and seedling performance of Oregon white oak and western redcedar. Research Paper PNW-RP-576. USDA Forest Service, Portland, OR, 35 pGoogle Scholar
  25. Dinerstein E, Olson DM, Graham DJ, Webster AL, Primm SA, Bookbinder MP (1995) Una evaluación del estado de conservación de las ecoregiones terrestres de América Latina y el Caribe. Banco Mundial/WWF, Washington, DCGoogle Scholar
  26. Donoso PJ, Soto DP, Gerding V (2009) effects of top pruning and slow-release fertilization in the nursery on the performance of outplanted Nothofagus nervosa seedlings. Bosque 30:48–53CrossRefGoogle Scholar
  27. Duffy JE (2009) Why biodiversity is important to the functioning of real-world ecosystems. Front Ecol Environ 7:437–444CrossRefGoogle Scholar
  28. Dumroese RK, Montville ME, Pinto JR (2015) Using container weights to determine irrigation needs: a simple method. Native Plants J 16:67–71CrossRefGoogle Scholar
  29. Dumroese RK, Landis TD, Pinto JR et al (2016) Meeting forest restoration challenges: using the target plant concept. Reforesta 1:37–52CrossRefGoogle Scholar
  30. Echeverría C, Coomes D, Salas J et al (2006) Rapid deforestation and fragmentation of Chilean temperature forests. Biol Conserv 130:481–494CrossRefGoogle Scholar
  31. Espinoza SE, Santelices RE, Cabrera AM, Magni CR (2017) Interactive effects of water stress, container size and fertilizer on survival, gas exchange and morphological traits of Quillaja saponaria seedlings. Bosque 38:409–414CrossRefGoogle Scholar
  32. González-Rodríguez V, Villar R, Casado R et al (2011) Spatio-temporal heterogeneity effects on seedling growth and establishment in four Quercus species. Ann Forest Sci 68:1217–1232CrossRefGoogle Scholar
  33. Grossnickle S (2005) Importance of root growth in overcoming planting stress. New Forest 30:273–294CrossRefGoogle Scholar
  34. Grossnickle SC (2012) Why seedlings survive: influence of plant attributes. New Forest 43:711–738CrossRefGoogle Scholar
  35. Haase DL, Rose R (1995) Vector analysis and its use for interpreting plant nutrient shifts in response to silvicultural treatments. Forest Sci 41:54–66CrossRefGoogle Scholar
  36. Hernández EI, Vilagrosa A, Luis VC et al (2009) Root hydraulic conductance, gas exchange and leaf water potential in seedlings of Pistacia lentiscus L. and Quercus suber L. grown under different fertilization and light regimes. Environ Exp Bot 67:269–276CrossRefGoogle Scholar
  37. Jiménez MN, Navarro FB, Ripoll MA, Bocio I, De Simón E (2005) Effect of shelter tubes on establishment and growth of Juniperus thurifera L. (Cupressaceae) seedlings in Mediterranean semi-arid environment. Ann Forest Sci 62:717–725CrossRefGoogle Scholar
  38. Kuehl RO (2001) Diseño de experimentos: Principios estadísticos de diseño y análisis de investigación. Thomson Learning, MéxicoGoogle Scholar
  39. Landis TD (1989) Chapter 1: Mineral nutrients and fertilization. In: Landis TD, Tinus RW, McDonald SE, Barnett JP (eds) The container tree nursery manual, vol 4. Seedling nutrition and irrigation. USDA Forest Service, Washington, DC, pp 1–67Google Scholar
  40. Landis TD, Steinfeld DE, Dumroese RK (2010) Native plant containers for restoration projects. Native Plants J 11:341–348CrossRefGoogle Scholar
  41. Luebert F, Pliscoff P (2006) Sinópsis bioclimática y vegetacional de Chile. Editorial Universitaria, SantiagoGoogle Scholar
  42. Luis VC, Puértolas J, Climent J et al (2009) Nursery fertilization enhances survival and physiological status in Canary Island pine (Pinus canariensis) seedlings planted in a semiarid environment. Eur J Forest Res 128:221–229CrossRefGoogle Scholar
  43. Mariotti B, Maltoni A, Jacobs DF, Tani A (2015) Container effects on growth and biomass allocation in Quercus robur and Juglans regia seedlings. Scand J Forest Res 30:401–415Google Scholar
  44. Marques PM, Ferreria L, Correia O, Martins-Loucao MA (2001) Tree shelters influence growth and survival of carob (Ceratonia siliqua L.) and cork oak (Quercus suber L.) plants on degraded Mediterranean sites. In: Villacampa Y, Brebbia CA, Uso JL (eds) Ecosystems and sustainable development III. WIT Press, Boston, pp 635–644Google Scholar
  45. McCreary D, Tietje W, Davy J et al (2011) Tree shelters and weed control enhance growth and survival of natural blue oak seedlings. Calif Agric 65:192–196CrossRefGoogle Scholar
  46. Miller B, Timmer VR (1994) Steady-state nutrition of Pinus resinosa seedlings: response to nutrient loading, irrigation and hardening regimes. Tree Physiol 14:1327–1338CrossRefGoogle Scholar
  47. Minnemeyer S, Laestadius L, Sizer N, Saint-Laurent C, Potapov P (2011) Assessing the potential for forest landscape restoration. Global partnership on forest landscape restoration. World Resource Institute, International Union for Conservation of Nature, South Dakota State UniversityGoogle Scholar
  48. Monsalve J, Escobar R, Acevedo M, Coopman R, Sánchez-Olate M (2009) Efecto de la concentración de nitrógeno sobre atributos morfológicos y potencial de crecimiento radicular en plantas de Eucalyptus globulus producidas a raíz cubierta. Bosque 30:88–94CrossRefGoogle Scholar
  49. Myers N, Mittermeier RA, Mittermeier CG, Fonseca J, Kent J (2000) Biodiversity hotspot for conservation priorities. Nature 403:853–858CrossRefGoogle Scholar
  50. Nahuelhual L, Carmona A, Lara A, Echeverría C, González M (2012) Land-cover change to forest plantations: proximate causes and implications for the landscape in south-central Chile. Landsc Urban Plan 107:12–20CrossRefGoogle Scholar
  51. Navarro-Cerrillo RM, Fragueiro B, Ceaceros C, del Campo A, de Prado R (2005) Establishment of Quercus ilex subsp. ballota [Desf.] Samp. using different weed strategies in southern Spain. Ecol Eng 25:332–342CrossRefGoogle Scholar
  52. Oliet JA, Jacobs DF (2007) Microclimatic conditions and plant morpho-physiological development within a tree shelter environment during establishment of Quercus ilex seedlings. Agric Forest Meteorol 144:58–72CrossRefGoogle Scholar
  53. Oliet JA, Planelles R, Artero F, Jacobs DF (2005) Nursery fertilization and tree shelters affect long-term field response of Acacia salicina Lindl. planted in Mediterranean semiarid conditions. Forest Ecol Manag 215:339–351CrossRefGoogle Scholar
  54. Oliet JA, Planelles R, Artero F et al (2009) Field performance of Pinus halepensis planted in Mediterranean arid conditions: relative influence of seedling morphology and mineral nutrition. New Forest 37:313–331CrossRefGoogle Scholar
  55. Oliet JA, Artero F, Cuadros S, Puértolas J, Luna L, Grau JM (2012) Deep planting with shelters improves performance of different stocktype sizes under Mediterranean conditions. New Forest 43:925–939CrossRefGoogle Scholar
  56. Oliet JA, Puértolas J, Planelles R, Jacobs DF (2013) Nutrient loading of forest tree seedlings to promote stress resistance and field performance: a Mediterranean perspective. New Forest 44:649–669CrossRefGoogle Scholar
  57. Oliet JA, Blasco R, Valenzuela P, Melero de Blas M, Puértolas J (2019) Should we use meshes or solid tube shelters when planting in Mediterranean semiarid environments. New Forest. Google Scholar
  58. Ovalle JF, Arellano EC, Oliet JA, Becerra P, Ginocchio R (2016) Linking nursery nutritional status and water availability post-planting under intense summer drought: the case of a South American Mediterranean tree species. iForest 9:758–765CrossRefGoogle Scholar
  59. Padilla FM, Miranda JD, Ortega R et al (2011) Does shelter enhance early seedling survival in dry environments? A test with eight Mediterranean species. Appl Veg Sci 14:31–39CrossRefGoogle Scholar
  60. Pinto JR, Marshall JD, Dumroese RK, Davis AS, Cobos DR (2011) Establishment and growth of container seedlings for reforestation: a function of stocktype and edaphic conditions. Forest Ecol Manag 261:1876–1884CrossRefGoogle Scholar
  61. Ponder F (2003) Ten-year results of tree shelters on survival and growth of planted hardwoods. North J Appl For 20:104–108Google Scholar
  62. Puértolas J, Gil L, Pardos JA (2003) Effects of nutritional status and seedling size on field performance of Pinus halepensis planted on former arable land in the Mediterranean basin. Forestry 76:159–168CrossRefGoogle Scholar
  63. Puértolas J, Benito L, Peñuelas J (2009) Effect of nursery shading on seedling quality and post-planting performance in two Mediterranean species with contrasting shade-tolerance. New Forest 38:295–308CrossRefGoogle Scholar
  64. Puértolas J, Oliet JA, Jacobs DF, Benito LF, Peñuelas JL (2010) Is light the key factor for success of tube shelters in forest restoration plantings under Mediterranean climates? Forest Ecol Manag 260:610–617CrossRefGoogle Scholar
  65. Puértolas J, Jacobs DF, Benito LF, Peñuelas JL (2012) Cost-benefit analysis of different container capacities and fertilization regimes in Pinus stock-type production for forest restoration in dry Mediterranean areas. Ecol Eng 44:210–215CrossRefGoogle Scholar
  66. Puttonen P (1997) Looking for the “silver-bullet” can one test do it? New Forest 13:9–27CrossRefGoogle Scholar
  67. Quezel P (1985) Definition of the Mediterranean region and the origin of its flora. In: Gómez-Campo C (ed) Plant conservation in the Mediterranean area. Dr W. Junk Publishers, Dordrecht, pp 287–302Google Scholar
  68. Ritchie GA, Landis TD, Dumroese RK, Haase DL (2010) Chapter 2: Assessing plant quality. In: Landis TD, Dumroese RK, Haase DL (eds) The container tree nursery manual, vol 7. Seedling processing, storage and outplanting. USDA Forest Service, Washington, DC, pp 17–81Google Scholar
  69. Rubio G, Zhu JM, Lynch JP (2003) A critical test of the two prevailing theories of plant response to nutrient availability. Am J Bot 90:143–152CrossRefGoogle Scholar
  70. Salifu KF, Jacobs DF, Birge ZKD (2008) Nursery nitrogen loading improves field performance on bareroot oak seedlings planted on abandoned mine land. Restor Ecol 17:339–349CrossRefGoogle Scholar
  71. Santelices R, Riquelme M (2007) Antecedentes dasométricos de Nothofagus alessandrii de la procedencia Coipué. Bosque 28:281–287CrossRefGoogle Scholar
  72. Santelices R, Drake F, Navarro-Cerrillo RM (2012) Establishment of a Nothofagus alessandrii plantation using different levels of shade and weed control methods in Talca province, central Chile. South Forests 74:71–76CrossRefGoogle Scholar
  73. Santelices R, Espinoza S, Cabrera A (2014) Effects of four levels of shade on survival, morphology and chlorophyll fluorescence of Nothofagus alessandrii container-grown seedlings. iForest 8:638–641CrossRefGoogle Scholar
  74. Santelices R, Espinoza S, Cabrera AM (2015) Effects of shading and slow release fertilizer on early growth of Nothofagus leonii seedlings from the northernmost distribution in Central Chile. Bosque 36:179–185CrossRefGoogle Scholar
  75. Santelices R, Espinosa S, Cabrera AM, Magni C (2018) Gestión de riesgo como herramienta para la conservación de los bosques de Nothogafus alessandrii una especie en peligro de extinción de Chile Central. Interciencia 43:144–150Google Scholar
  76. Santibañez F, Santibañez P, Caroca C et al (2014) Atlas del cambio climático en las zonas de régimen árido y semiárido. Regiones de Coquimbo, Valparaiso y Metropolitana. Universidad de Chile, ChileGoogle Scholar
  77. Scarascia-Mugnozza G, Oswald H, Piussi P, Radoglou K (2000) Forest on the Mediterranean region: gaps in knowledge and research needs. Forest Ecol Manag 132:96–109CrossRefGoogle Scholar
  78. Schott KM, Snively AEK, Landhäusser SM, Pinno BD (2016) Nutrient loaded seedlings reduce the need for field fertilization and vegetation management on boreal forest reclamation sites. New Forest 47:393–410CrossRefGoogle Scholar
  79. Sharpe WE, Swistock BR, Mecum KE, Demchik MC (1999) Greenhouse and field growth of northern red oak seedlings inside different types of tree shelters. J Arboric 25:249–257Google Scholar
  80. Sheffield J, Wood E (2008) Projected changes in drought occurrence under future global warming from multi-model, multi-scenario, IPCC AR4 simulations. Clim Dyn 31:79–105CrossRefGoogle Scholar
  81. Smith-Ramírez C (2004) The Chilean coastal range: a vanishing center of biodiversity and endemism in South American temperate rainforests. Biodivers Conserv 13:373–393CrossRefGoogle Scholar
  82. South DB, Mitchell RJ (1999) Determining the “optimum” slash pine seedling size for use with four levels of vegetation management on a flatwoods site in Georgia, USA. Can J Forest Res 29:1039–1046CrossRefGoogle Scholar
  83. South DB, Rakestraw JL, Lowerts GA (2001) Early gains from planting large diameter seedlings and intensive management are additive for loblolly pine. New Forest 22:97–110CrossRefGoogle Scholar
  84. Stanturf JA, Palik BJ, Dumroese RK (2014) Contemporary forest restoration: a review emphasizing function. Forest Ecol Manag 331:292–323CrossRefGoogle Scholar
  85. Taylor TS, Loewenstein EF, Chappelka AR (2006) Effect of animal browse protection and fertilizer application on the establishment of planted Nuttall oak seedlings. New Forest 32:133–143CrossRefGoogle Scholar
  86. Temminghoff EEJM, Houba VJG (2004) Plant analysis procedures. Kluwer, DodrechtCrossRefGoogle Scholar
  87. Timmer VR (1996) Exponential nutrient loading: a new fertilization technique to improve seedling outplanting performance on competitive sites. New Forest 13:279–299CrossRefGoogle Scholar
  88. Trubat R, Cortina J, Vilagrosa A (2006) Plant morphology and root hydraulics are altered by nutrient deficiency in Pistacia lentiscus (L.). Trees 20:334–339CrossRefGoogle Scholar
  89. Trubat R, Cortina J, Vilagrosa A (2008) Short term nitrogen deprivation increases field performance in nursery seedlings of Mediterranean woody species. J Arid Environ 72:879–890CrossRefGoogle Scholar
  90. Trubat R, Cortina J, Vilagrosa A (2010) Nursery fertilization affects seedling traits but not field performance in Quercus suber L. J Arid Environ 74:491–497CrossRefGoogle Scholar
  91. Trubat R, Cortina J, Vilagrosa A (2011) Nutrient deprivation improves field performance of woody seedlings in a degraded semi-arid shrubland. Ecol Eng 37:1164–1173CrossRefGoogle Scholar
  92. Tsakaldimi M, Ganatsas P, Jacobs DF (2013) Prediction of planted seedling survival of five Mediterranean species based on initial seedling morphology. New Forest 44:327–339CrossRefGoogle Scholar
  93. Uscola M, Salifu KF, Oliet JA, Jacobs DF (2015) An exponential fertilization dose–response model to promote restoration of the Mediterranean oak Quercus ilex. New Forest 46:795–812CrossRefGoogle Scholar
  94. Valencia D, Saavedra J, Brull J, Santelices R (2018) Severidad del daño causado por los incendios forestales en los bosques remanentes de Nothofagus alessandrii Espinosa en la Región del Maule de Chile. Gayana Bot 75:531–534CrossRefGoogle Scholar
  95. Valladares F, Vilagrosa A, Peñuelas J et al (2004) Estrés hídrico: Ecofisiología y escalas de la sequía. In: Valladares F (ed) Ecología del bosque mediterráneo en un mundo cambiante. Ministerio de Medio Ambiente, Madrid, pp 163–190Google Scholar
  96. van den Driessche R (1984) Relationship between spacing and nitrogen fertilization of seedlings in the nursery, seedling mineral nutrition and outplanting performance. Can J Forest Res 14:431–436CrossRefGoogle Scholar
  97. Vilagrosa A, Bellot J, Vallejo VR, Gil Pelegrín E (2003) Cavitation, stomatal conductance, and leaf dieback in seedlings of two co-occurring Mediterranean shrubs during an intense drought. J Exp Bot 54:2015–2024CrossRefGoogle Scholar
  98. Vileta AE, Rennella MJ, Ravetta DA (2003) Response of tree-type and shrub-type Prosopis (Mimosaceae) taxa to water and nitrogen availabilities. Forest Ecol Manag 186:327–337CrossRefGoogle Scholar
  99. Villar-Salvador P, Planelles R, Enríquez E, Peñuelas-Rubira J (2004) Nursery cultivation regimes, plant functional attributes, and field performance relationship in the Mediterranean oak Quercus ilex L. Forest Ecol Manag 196:257–266CrossRefGoogle Scholar
  100. Villar-Salvador P, Puértolas J, Penuelas JL, Planelles R (2005) Effect of nitrogen fertilization in the nursery on the drought and frost resistance of Mediterranean forest species. Forest Syst 14:408–418Google Scholar
  101. Villar-Salvador P, Puértolas J, Cuesta B et al (2012) Increase in size and nitrogen concentration enhances seedling survival in Mediterranean plantations. Insights from an ecophysiological conceptual model of plant survival. New Forest 43:755–777CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Instituto ForestalSan Pedro de la Paz, ConcepciónChile
  2. 2.Instituto de Ciencias Agronómicas y Veterinarias, Campus ColchaguaUniversidad de O’HigginsSan FernandoChile
  3. 3.US Department of Agriculture, Forest ServiceRocky Mountain Research StationMoscowUSA

Personalised recommendations