Advertisement

New Forests

pp 1–15 | Cite as

Responses of coppiced Eucalyptus to macro- and micronutrient application

  • José Henrique T. RochaEmail author
  • Andréa V. A. Wenzel
  • Eduardo A. S. C. Melo
  • Ângela Simone Freitag Lima
  • Rodrigo Eiji Hakamada
  • Alexandre de Vicente Ferraz
  • José Carlos Arthur Junior
  • José Leonardo de Moraes Gonçalves
  • Gabriela Moreira
  • Antônio Natal Gonçalves
Article
  • 45 Downloads

Abstract

Coppicing is a widely adopted management system for forest plantations; however, little information is available pertaining to responses to fertilizer application. Our objective was therefore to assess the effect of individual and conjunct omissions of N, P, K, Ca, Mg, B, and Cu on the growth of a highly productive Eucalyptus urophylla × E. grandis hybrid clone, managed for coppicing at the second rotation, in two soils of contrasting fertility in southeastern Brazil. Two commercial sites of approximately 7 years of age, one in an Arenosol and the other in a Ferralsol, were harvested and the experiments installed. At the Arenosol site, the yield from the fertilizer treatment in the coppice system (R2) was the same as determined for the first rotation (high forest; R1), at approximately 40 m3 ha−1 year−1 at 6 years old. In contrast, the yield from the fertilizer treatment in R2 at the Ferralsol site was 11% lower compared with R1. Despite some alterations in leaf nutrient concentrations, other than for K at the Arenosol site (where the K omission treatment reduced wood volume at 6 years by 21%), no yield reduction was found for any no-fertilizer treatments. Due to the widely distributed root system already established in coppiced plantations, ensuring a large volume of soil exploration, coppiced eucalypts only responded to K application. This is due to low soil K availability and the high K demand in eucalypt plantations.

Keywords

Fertilizer application Tropical forest Coppice shoot management Planted forest 

Notes

Acknowledgements

The authors would like to thanks International Paper Brazil and Silviculture and Management Thematic Program (PTSM-IPEF) for the financial and fieldwork support.

References

  1. ABRAF (2013) Anuário estatístico da Associação Brasileira de Produtores de Floresta Plantada, ano base 2012. ABRAF, BrasíliaGoogle Scholar
  2. Alvares CA, Stape JL, Sentelhas PC, Goncalves JLD, Sparovek G (2013) Koppen’s climate classification map for Brazil. Meteorol Z 22:711–728.  https://doi.org/10.1127/0941-2948/2013/0507 CrossRefGoogle Scholar
  3. Barros FB, Teixeira PC, Teixeira JL (1997) Nutrição e produtividade de povoamentos de eucalipto manejados por talhadia. Sér Téc IPEF 11:79–87Google Scholar
  4. Battie-Laclau P, Delgado-Rojas JS, Christina M, Nouvellon Y, Bouillet JP, Piccolo MD, Moreira MZ, Goncalves JLD, Roupsard O, Laclau JP (2016) Potassium fertilization increases water-use efficiency for stem biomass production without affecting intrinsic water-use efficiency in Eucalyptus grandis plantations. For Ecol Manag 364:77–89.  https://doi.org/10.1016/j.foreco.2016.01.004 CrossRefGoogle Scholar
  5. Bazani JH (2014) Eficiência de fertilizantes fosfatados solúveis e pouco solúveis, com ou sem complexação com substâncias húmicas, em plantações de eucalipto. Ciências Florestais. USP, Piracicaba, SPGoogle Scholar
  6. Drake PL, Mendham DS, Ogden GN (2013) Plant carbon pools and fluxes in coppice regrowth of Eucalyptus globulus. For Ecol Manag 306:161–170.  https://doi.org/10.1016/j.foreco.2013.06.034 CrossRefGoogle Scholar
  7. Faria GE, Barros NF, Novais RF, Neves JCL, Teixeira JL (2002) Produção e estado nutricional de povoamentos de Eucalyptus grandis, em segunda rotação, em resposta à adubação potássica. Rev Árvore 26:577–584CrossRefGoogle Scholar
  8. Fernandez JQP, Dias LE, Barros NF, Novais RF, Moraes EJ (2000) Productivity of Eucalyptus camaldulensis affected by rate and placement of two phosphorus fertilizers to a Brazilian oxisol. For Ecol Manage 127:93–102.  https://doi.org/10.1016/s0378-1127(99)00121-8 CrossRefGoogle Scholar
  9. Ferreira JMD, Stape JL (2009) Productivity gains by fertilisation in Eucalyptus urophylla clonal plantations across gradients in site and stand conditions. South For 71:253–258.  https://doi.org/10.2989/sf.2009.71.4.1.1028 CrossRefGoogle Scholar
  10. Gabrielle B, The NN, Maupu P, Vial E (2013) Life cycle assessment of eucalyptus short rotation coppices for bioenergy production in southern France. GCB Bioenergy 5:30–42.  https://doi.org/10.1111/gcbb.12008 CrossRefGoogle Scholar
  11. Gava JL (1997) Efeito da adubação potássica em plantios de E. grandis conduzidos em segunda rotação em solos com diferentes teores de potásssio trocável. Sér Téc IPEF 11:89–94Google Scholar
  12. Gonçalves JLM (2011) Fertilização de Plantações de Eucalipto. In: Gonçalves JLM, Pulito AP, Arthur Junior JC, Silva LD (eds) II Encontro Brasileiro de Silvicultura. IPEF, CampinasGoogle Scholar
  13. Gonçalves JLM, Carlyle JC (1994) Modeling the influence of moisture and temperature on net nitrogen mineralization in a forested sandy soil. Soil Biol Biochem 26:1557–1564.  https://doi.org/10.1016/0038-0717(94)90098-1 CrossRefGoogle Scholar
  14. Gonçalves JLM, Alvares CA, Higa AR, Silva LD, Alfenas AC, Stahl J, Ferraz SFD, Lima WDP, Brancalion PHS, Hubner A, Bouillet JPD, Laclau JP, Nouvellon Y, Epron D (2013) Integrating genetic and silvicultural strategies to minimize abiotic and biotic constraints in Brazilian eucalypt plantations. For Ecol Manag 301:6–27.  https://doi.org/10.1016/j.foreco.2012.12.030 CrossRefGoogle Scholar
  15. Gonçalves JLM, Alvares CA, Behling M, Alves JM, Pizzi GT, Angeli A (2014a) Productivity of eucalypt plantations managed under high forest and coppice systems, depending on edaphoclimatic factors. Sci For/For Sci 40:411–419Google Scholar
  16. Gonçalves JLM, Rocha JHT, Bazani JH, Hakamada RE (2014b) Nutrição e adubação da cultura do eucalipto manejada no sistema de talhadia. In: Prado RM, Wadt PGS (eds) Nutrição e adubação de espécies florestais e palmeiras. FCAV/CAPES, JaboticabalGoogle Scholar
  17. Herbert MA (1983) The response of Eucalyptus grandis to fertilising with nitrogen, phosphorus, potassium and dolomitic lime on a Mispah soil series. S Afr For J 124:4–12Google Scholar
  18. Herbert MA, Jackson DA, Van Themaat RV (1982) Final findings on the response of Eucalyptus grandis to fertilising at De Kaap, Eastern Transvaal. S Afr For J 122:53–58Google Scholar
  19. Laclau JP, Almeida JCR, Goncalves JLM, Saint-Andre L, Ventura M, Ranger J, Moreira RM, Nouvellon Y (2009) Influence of nitrogen and potassium fertilization on leaf lifespan and allocation of above-ground growth in Eucalyptus plantations. Tree Physiol 29:111–124.  https://doi.org/10.1093/treephys/tpn010 CrossRefGoogle Scholar
  20. Little KM, du Toit B (2003) Management of Eucalyptus grandis coppice regeneration of seedling parent stock in Zululand, South Africa. Aust For 66:108–112.  https://doi.org/10.1080/00049158.2003.10674899 CrossRefGoogle Scholar
  21. Malavolta E, Vitti GC, Oliveira AS (1989) Avaliação do estado nutricional das plantas: princípios e aplicações. Associação Brasileira para Pesquisa da Potassa e do Fosfato, PiracicabaGoogle Scholar
  22. Matthews JD (1994) Silvicultural systems. Clarendon Press, OxfordGoogle Scholar
  23. Mello SLM, Goncalves JLM, Gava JL (2007) Pre- and post-harvest fine root growth in Eucalyptus grandis stands installed in sandy and loamy soils. For Ecol Manag 246:186–195.  https://doi.org/10.1016/j.foreco.2007.03.060 CrossRefGoogle Scholar
  24. Melo EASC, Goncalves JLD, Rocha JHT, Hakamada RE, Bazani JH, Wenzel AVA, Arthur JC, Borges JS, Malheiros R, de Lemos CCZ, Ferreira EVD, Ferraz AD (2016) Responses of clonal eucalypt plantations to N, P and K fertilizer application in different edaphoclimatic conditions. Forests 7:2.  https://doi.org/10.3390/f7010002 CrossRefGoogle Scholar
  25. Paes F, Lima AMN, Hakamada RE, de Barros NF (2013) Effect of harvest residues management, soil tillage and fertilization on eucalyptus productivity. Rev Bras Cienc Solo 37:1081–1090CrossRefGoogle Scholar
  26. Pulito AP, de Moraes Goncalves JL, Smethurst PJ, Arthur Junior JC, Alvares CA, Tertulino Rocha JH, Huebner A, de Moraes LF, Miranda AC, Kamogawa MY, Gava JL, Chaves R, Silva CR (2015) Available nitrogen and responses to nitrogen fertilizer in Brazilian eucalypt plantations on soils of contrasting texture. Forests 6:973–991.  https://doi.org/10.3390/f6040973 CrossRefGoogle Scholar
  27. Reis MGF, Kimmins JP, Rezende GC, Barros NF (1985) Acúmulo de biomassa em uma seqüência de idade de Eucalyptus grandis plantado no cerrado em duas áreas com diferentes produtividades. Rev Árvore 9:149–162Google Scholar
  28. Rocha JHT (2017) Manejo de resíduos florestais e deficiência nutricional em duas rotações de cultivo de eucalipto. Recursos Florestais Escola Superior de Agricultura “Luiz de Queiroz” - Universidade de São Paulo, PiracicabaGoogle Scholar
  29. Rodrigues M, Pavinato PS, Withers PJA, Teles APB, Herrera WFB (2016) Legacy phosphorus and no tillage agriculture in tropical oxisols of the Brazilian savanna. Sci Total Environ 542:1050–1061.  https://doi.org/10.1016/j.scitotenv.2015.08.118 CrossRefGoogle Scholar
  30. Schumacher FX, Hall FDS (1933) Logarithmic expression of timber-tree volume. J Agric Res 47:0719–0734Google Scholar
  31. Scolforo JRS, Thiersch CR (2004) Biometria florestal: medição, volumetria e gravimetria. UFLA/FAEPE, LavrasGoogle Scholar
  32. Silva JC, Coelho L (2010) Lime and silicate applied in eucalypt: effect on soil and plant. Biosci J 26:919–924Google Scholar
  33. Stape JL (1997) Planejamento global e normatização de procedimentos operacionais da talhadia simples em Eucalyptus. Sér Téc IPEF 11:51–62Google Scholar
  34. Teixeira PC, Novais RF, Barros NF, Neves JCL, Teixeira JL (2002) Eucalyptus urophylla root growth, stem sprouting and nutrient supply from the roots and soil. For Ecol Manag 160:263–271.  https://doi.org/10.1016/s0378-1127(01)00469-8 CrossRefGoogle Scholar
  35. Valeri SV, Corradini L, Aguiar IB, Souza ECA, Banzatto DA (1985) Efeitos do fósforo e calcário dolomítico no desenvolvimento inicial de Eucalyptus grandis Hill ex Maiden plantado em um regossolo. IPEF 29:55–60Google Scholar
  36. Walkley A, Black IA (1934) An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci 37:29–38.  https://doi.org/10.1097/00010694-193401000-00003 CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • José Henrique T. Rocha
    • 1
    Email author return OK on get
  • Andréa V. A. Wenzel
    • 2
  • Eduardo A. S. C. Melo
    • 3
  • Ângela Simone Freitag Lima
    • 2
  • Rodrigo Eiji Hakamada
    • 4
  • Alexandre de Vicente Ferraz
    • 5
  • José Carlos Arthur Junior
    • 6
  • José Leonardo de Moraes Gonçalves
    • 2
  • Gabriela Moreira
    • 7
  • Antônio Natal Gonçalves
    • 2
  1. 1.Faculdade de Ensino Superior e Formação Integral (FAEF)GarçaBrazil
  2. 2.Escola Superior de Agricultura “Luiz de Queiroz”Universidade de São PauloPiracicabaBrazil
  3. 3.Sinarmas ForestryPerawangIndonesia
  4. 4.Universidade Federal Rural de PernambucoRecifeBrazil
  5. 5.Instituto de Pesquisa e Estudos Florestais (IPEF)PiracicabaBrazil
  6. 6.Universidade Federal Rural do Rio de JaneiroSeropédicaBrazil
  7. 7.International Paper BrazilMogi GuaçuBrazil

Personalised recommendations