New Forests

, Volume 49, Issue 3, pp 297–309 | Cite as

Climate-based seed zones for Mexico: guiding reforestation under observed and projected climate change

  • Dante Castellanos-Acuña
  • Kenneth W. Vance-Borland
  • J. Bradley St. Clair
  • Andreas Hamann
  • Javier López-Upton
  • Erika Gómez-Pineda
  • Juan Manuel Ortega-Rodríguez
  • Cuauhtémoc Sáenz-Romero
Article
  • 189 Downloads

Abstract

Seed zones for forest tree species are a widely used tool in reforestation programs to ensure that seedlings are well adapted to their planting environments. Here, we propose a climate-based seed zone system for Mexico to address observed and projected climate change. The proposed seed zone classification is based on bands of climate variables often related to genetic adaptation of tree species: mean coldest month temperature (MCMT) and an aridity index (AHM). The overlay of the MCMT and AHM for the 1961–1990 period resulted in 63 climate-based zones. Climate change observed over the last three decades has resulted in an increase of + 0.74 °C for MCMT and a shift toward overall drier conditions across Mexico. By the 2050s, MCMT is expected to increase by + 1.7 °C and AHM shifts further towards drier conditions. We recommend moving seed sources from warm, dry locations towards currently wetter and cooler planting sites, to compensate for climate change that has already occurred and is expected to continue for the next decades. We contribute a straight-forward climate-based seed zone system that allows practitioners to match seed procurement regions with planting regions under observed and anticipated climate change. Our transfer recommendations using climate-based zones can be implemented within the existing seed zone system, which often span large climate gradients.

Keywords

Climate change adaptation Reforestation Seed zones Seed transfer guidelines 

Notes

Acknowledgements

This paper is an undertaking of the Forest Genetic Resources Working Group/North American Forest Commission/Food and Agricultural Organization of the United Nations. Funding was provided to CSR by the Mexican National Forest Commission (CONAFOR; special thanks to Jesús Carrasco-Gómez, Alfredo Arciniega-Mendoza, Fernando Miranda-Piedragil, Yanet B. García-Cruz and Cinthya V. Velarde-Nuño), an NSERC Discovery Grant (#330527) to AH, and Mexican Council of Science and Technology (CONACyT) scholarships to DCA (#253855) and to EGP (#291197). Valuable comments of the journal assigned Associated Editor and two anonymous reviewers helped to improve significantly the manuscript.

References

  1. Aitken SN, Yeaman S, Holliday JA, Wang T, Curtis-McLane S (2008) Adaptation, migration or extirpation: climate change outcomes for tree populations. Evol Appl 1:95–111CrossRefPubMedPubMedCentralGoogle Scholar
  2. Benito-Garzón M, Fernández-Manjarrés JF (2015) Testing scenarios for assisted migration of forest trees in Europe. New For 46:979–994CrossRefGoogle Scholar
  3. Bower AD, Clair JBS, Erickson V (2014) Generalized provisional seed zones for native plants. Ecol Appl 24:913–919CrossRefPubMedGoogle Scholar
  4. Castellanos-Acuña D, Lindig-Cisneros R, Sáenz-Romero C (2015) Altitudinal assisted migration of Mexican pines as an adaptation to climate change. Ecosphere.  https://doi.org/10.1890/ES14-00375.1 Google Scholar
  5. Castellanos-Bolaños JF, Treviño-Garza EJ, Aguirre-Calderón OA, Jiménez-Pérez J, Velázquez-Martínez A (2010) Diversidad arbórea y estructura espacial de bosques de pino-encino en Ixtlán de Juárez, Oaxaca. Rev Mex Cienc Forest 1:39–52Google Scholar
  6. Chmura DJ et al (2011) Forest responses to climate change in the northwestern United States: ecophysiological foundations for adaptive management. For Ecol Manag 261:1121–1142CrossRefGoogle Scholar
  7. CONAFOR (2014) Establecimiento de Unidades Productoras y Manejo de Germoplasma Forestal-Especificaciones Tecnicas. Declaratoria de Vigencia de la Norma Mexicana NMX-AA-169-SCFI-2014, Diario Oficial de la Federación, Mexico City, MexicoGoogle Scholar
  8. Cuervo-Robayo A (2014) Fortaleciendo los análisis de cambio climático en la aplicación de los modelos de distribución potencial. Ph.D. thesis. Universidad Autónoma del Estado de México, MéxicoGoogle Scholar
  9. Dumroese RK, Williams MI, Stanturf JA, Clair JBS (2015) Considerations for restoring temperate forests of tomorrow: forest restoration, assisted migration, and bioengineering. New For 46:947–964CrossRefGoogle Scholar
  10. Dutkowski G, Ivković M, Gapare WJ, McRae TA (2016) Defining breeding and deployment regions for radiata pine in southern Australia. New For 47:783–799CrossRefGoogle Scholar
  11. Gapare WJ, Ivković M, Liepe KJ, Hamann A, Low CB (2015) Drivers of genotype by environment interaction in radiata pine as indicated by multivariate regression trees. For Ecol Manag 353:21–29CrossRefGoogle Scholar
  12. Gray LK, Hamann A (2011) Strategies for reforestation under uncertain future climates: guidelines for Alberta, Canada. PLoS ONE 6:e22977.  https://doi.org/10.1371/journal.pone.0022977 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Hamann A, Gylander T, Chen P-Y (2011) Developing seed zones and transfer guidelines with multivariate regression trees. Tree Genet Genomes 7:399–408CrossRefGoogle Scholar
  14. Harris I, Jones PD, Osborn TJ, Lister DH (2014) Updated high-resolution grids of monthly climatic observations—the CRU TS3.10 dataset. Int J Climatol 34:623–642CrossRefGoogle Scholar
  15. Hernández-Martínez J, López-Upton J, Vargas-Hernández JJ, Jasso-Mata J (2007) Zonas semilleras de pinus greggii var. australis en Hidalgo, México. Rev Fitotec Mex 30:241–249Google Scholar
  16. Hodge GR, Dvorak WS (2014) Breeding southern US and Mexican pines for increased value in a changing world. New For 45:295–300CrossRefGoogle Scholar
  17. Johnson G, Sorensen FC, St Clair JB, Cronn RC (2004) Pacific Northwest forest tree seed zones: a template for native plants? Native Plants J 5:131–140CrossRefGoogle Scholar
  18. Kang N-Y, Elsner JB (2015) Trade-off between intensity and frequency of global tropical cyclones. Nat Clim Change 5:661–664CrossRefGoogle Scholar
  19. Ledig FT, Mápula-Larreta M, Bermejo-Velázquez B, Reyes-Hernández V, Flores-López C, Capó-Arteaga MA (2000) Locations of endangered spruce populations in México and the demography of Picea chihuahuana. Madroño 47:71–88Google Scholar
  20. Ledig FT, Rehfeldt GE, Sáenz-Romero C, Flores-López C (2010) Projections of suitable habitat for rare species under global warming scenarios. Am J Bot 97:970–987CrossRefPubMedGoogle Scholar
  21. Lesser MR, Parker WH (2006) Comparison of canonical correlation and regression based focal point seed zones of white spruce. Can J Forest Res 36:1572–1586CrossRefGoogle Scholar
  22. Loya-Rebollar E, Sáenz-Romero C, Lindig-Cisneros RA, Lobit P, Villegas-Moreno JA, Sánchez-Vargas NM (2013) Clinal variation in Pinus hartwegii populations and its application for adaptation to climate change. Silvae Genet 62(3):86–95Google Scholar
  23. McKenney DW, Hutchinson MF, Kesteven JL, Venier LA (2001) Canada’s plant hardiness zones revisited using modern climate interpolation techniques. Can J Plant Sci 81:129–143CrossRefGoogle Scholar
  24. Mitchell TD, Jones PD (2005) An improved method of constructing a database of monthly climate observations and associated high-resolution grids. Int J Climatol 25:693–712CrossRefGoogle Scholar
  25. Morgenstern K (1996) Geographic variation in forest trees. Genetic basis and application of knowledge in silviculture. University of British Columbia Press, VancouverGoogle Scholar
  26. Omernik JM, Griffith GE (2014) Ecoregions of the conterminous United States: evolution of a hierarchical spatial framework. Environ Manag 54:1249–1266CrossRefGoogle Scholar
  27. Parker WH (1992) Focal point seed zones: site-specific seed zone delineation using geographic information systems. Can J For Res 22:267–271CrossRefGoogle Scholar
  28. Pavia EG, Graef F, Reyes J (2009) Annual and seasonal surface air temperature trends in México. Int J Climatol 29:1324–1329CrossRefGoogle Scholar
  29. Potter KM, Hargrove WW (2012) Determining suitable locations for seed transfer under climate change: a global quantitative method. New For 43:581–599CrossRefGoogle Scholar
  30. Potter KM, Jetton RM, Bower A, Jacobs DF, Man G, Hipkins VD, Westwood M (2017) Banking on the future: progress, challenges and opportunities for the genetic conservation of forest trees. New For 48:153–180CrossRefGoogle Scholar
  31. Ramírez MI, Azcárate JG, Luna L (2003) Effects of human activities on monarch butterfly habitat in protected mountain forests, Mexico. For Chron 79:242–246CrossRefGoogle Scholar
  32. Rehfeldt GE (1988) Ecological genetics of Pinus contorta from the Rocky Mountains (USA): a synthesis. Silvae Genet 37:131–135Google Scholar
  33. Rehfeldt GE, Ying CC, Spittlehouse DL, Hamilton DA (1999) Genetic responses to climate for Pinus contorta in British Columbia: niche breadth, climate change, and reforestation. Ecol Monogr 69:375–407CrossRefGoogle Scholar
  34. Sáenz-Romero C, Tapia-Olivares BL (2008) Genetic variation in frost damage and seed zone delineation within an altitudinal transect of Pinus devoniana (P. michoacana) in Mexico. Silvae Genét 57(3):165–170Google Scholar
  35. Sáenz-Romero C, Rehfeldt GE, Crookston NL, Duval P, St-Amant R, Beaulieu J, Richardson BA (2010) Spline models of contemporary, 2030, 2060 and 2090 climates for Mexico and their use in understanding climate-change impacts on the vegetation. Clim Change 102:595–623CrossRefGoogle Scholar
  36. Sáenz-Romero C, Rehfeldt GE, Duval P, Lindig-Cisneros R (2012) Abies religiosa habitat prediction in climatic change scenarios and implications for monarch butterfly conservation in Mexico. For Ecol Manag 275:98–106CrossRefGoogle Scholar
  37. Sáenz-Romero C, Lamy JB, Ducousso A, Musch B, Ehrenmann F, Delzon S, Cavers S, Chałupka W, Dağdaş S, Hansen JK, Lee SJ, Liesebach M, Rau HM, Psomas A, Schneck V, Steiner W, Zimmermann NE, Kremer A (2017) Adaptive and plastic responses of Quercus petraea populations to climate across Europe. Glob Change Biol 23(7):2831–2847CrossRefGoogle Scholar
  38. St. Clair JB (2006) Genetic variation in fall cold hardiness in coastal Douglas-fir in western Oregon and Washington. Can J Bot 84:1110–1121CrossRefGoogle Scholar
  39. St. Clair JB, Mandel NL, Vance-Borland KW (2005) Genecology of Douglas fir in western Oregon and Washington. Ann Bot 96:1199–1214CrossRefPubMedPubMedCentralGoogle Scholar
  40. Taïbi K, del Campo AD, Mulet JM, Flors J, Aguado A (2014) Testing Aleppo pine seed sources response to climate change by using trial sites reflecting future conditions. New For 45:603–624CrossRefGoogle Scholar
  41. Tucker CM (2004) Community institutions and forest management in Mexico’s monarch butterfly reserve. Soc Nat Resour 17:569–587CrossRefGoogle Scholar
  42. Vizcaíno-Palomar N, Ibáñez I, Benito-Garzón M, González-Martínez SC, Zavala MA, Alía R (2017) Climate and population origin shape pine tree height-diameter allometry. New For 48:363–379CrossRefGoogle Scholar
  43. Wang T, Hamann A, Spittlehouse D, Carroll C (2016) Locally downscaled and spatially customizable climate data for historical and future periods for North America. PLoS ONE 11:e0156720.  https://doi.org/10.1371/journal.pone.0156720 CrossRefPubMedPubMedCentralGoogle Scholar
  44. Ying CC, Yanchuk AD (2006) The development of British Columbia’s tree seed transfer guidelines: purpose, concept, methodology, and implementation. For Ecol Manag 227:1–13CrossRefGoogle Scholar
  45. Zacarías-Eslava Y, Castillo R (2010) Comunidades vegetales templadas de la Sierra Juárez, Oaxaca: pisos altitudinales y sus posibles implicaciones ante el cambio climático. Bol Soc Bot Méx 87:13–28Google Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2017

Authors and Affiliations

  • Dante Castellanos-Acuña
    • 1
  • Kenneth W. Vance-Borland
    • 2
  • J. Bradley St. Clair
    • 3
  • Andreas Hamann
    • 1
  • Javier López-Upton
    • 4
  • Erika Gómez-Pineda
    • 5
  • Juan Manuel Ortega-Rodríguez
    • 6
  • Cuauhtémoc Sáenz-Romero
    • 5
  1. 1.Department of Renewable ResourcesUniversity of AlbertaEdmontonCanada
  2. 2.The Conservation Planning InstituteCorvallisUSA
  3. 3.USDA Forest Service, Pacific Northwest Research StationCorvallisUSA
  4. 4.Postgrado en Ciencias ForestalesColegio de PostgraduadosTexcocoMexico
  5. 5.Instituto de Investigaciones Agropecuarias y Forestales, Universidad Michoacana de San Nicolás de Hidalgo (IIAF-UMSNH)MoreliaMexico
  6. 6.Facultad de Biología, UMSNHCiudad UniversitariaMoreliaMexico

Personalised recommendations