Skip to main content

Advertisement

Log in

Production of a new generation of seeds through the use of somatic clones in controlled crosses of black spruce (Picea mariana)

  • Published:
New Forests Aims and scope Submit manuscript

Abstract

To assess the potential to integrate somatic clones (SC) of desired characteristics in production of high genetic quality seed, controlled crosses between different SCs of black spruce (Picea mariana (Mill) B.S.P.) were used to assess their suitability for the production of viable pollen, cones, seeds and seedlings. These SC produced male and female strobili at an early stage. Pollen, cones and seeds produced were characterized (mass, size, germination); their characteristics were similar to those produced by trees in natural forests or seed orchards. A maternal effect was demonstrated for the cone size and seed mass. Although seeds had excellent germination rates, the somatic biparental crosses were divided into three distinct groups with different germination curves using the Weibull function. Seeds from controlled crosses between different SC enabled the production of high morpho-physiological quality seedlings in a forest nursery. Using black spruce as a model, we showed, for the first time, that SC can be used as seed producers. These encouraging results open new perspectives on the tangible integration of somatic embryogenesis (SE) in the chain of seed, vegetative propagation (cuttings and SE) and production of plants for high productivity plantations. Controlled crosses can be made between SC with the desired characteristics (fewer large branches, fewer nodes, good growth, high wood density, performance, improved yield, etc.), vegetative propagules produced and deployed to clonal tests. After elimination of the worst performing SC, clonal tests can be converted into seed orchards that produce a new generation of seeds of high genetic quality. This will allow the rapid introduction of new materials in elite breeding programs of forest species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Beaulieu J, Doerksen T, Boyle B, Clément S, Deslauriers M, Beauseigle S, Blais S, Poulin P-L, Lenz P, Caron S, Rigault P, Bicho P, Bousquet J, MacKay J (2011) Association genetics of wood physical traits in the conifer white spruce and relationships with gene expression. Genetics 188(1):197–214. doi:10.1534/genetics.110.125781

    Google Scholar 

  • Beers WL, Bivens J, Mocha JE (1981) Pollen collection. In: Franklin EC (ed) Pollen Management Handbook, vol Agriculture Handbook 587. vol 30–32. USDA, Forest Service, Washington, DC (USA), pp 30–36

  • Bilir N, Kang K-S, Lindgren D (2003) Fertility variation and effective number in the seed production areas of Pinus radiata and Pinus pinaster. Silvae Genetica 52(2):75–77

    Google Scholar 

  • Bomal C, Tremblay F-M (2000) Dried cryopreserved somatic embryos of two Picea species provide suitable material for direct plantlet regeneration and germplasm storage. Ann Bot 86:177–182

    Article  Google Scholar 

  • Bonner FT, Dell TR (1976) The Weibull function: a new method of comparing seed vigor. J Seed Technol 1(1):96–103

    Google Scholar 

  • Bramlett DL, O’Gwynn CH (1981) Controlled pollination. In: Franklin EC (ed) Pollen management handbook. vol 10–14. USDA, Forest Service, Washington, DC, pp 44–51

  • Brault N, Mercier S, Bettez M (1996) Traitement des graines d’arbres forestiers: 2ième partie de 2. L’Aubelle 113(37):1–12

    Google Scholar 

  • Burgar RJ (1964) The effect of seed size on germination, survival and initial growth in white spruce. For Chron 40(1):93–97

    Google Scholar 

  • Caron G-É, Powell GR (1989) Cone size and seed yield in young Picea mariana trees. Can J For Res 19:351–358

    Article  Google Scholar 

  • Caron G-É, Powell GR (1992) Patterns of cone distribution in crowns of young Picea mariana. I. Effect of tree age on seed cones. Can J For Res 22:46–55

    Article  Google Scholar 

  • Carrier DJ, Bock CA, Cunningham JE, Cyr DR, Dunstan DI (1997a) (+)-ABA content and lipid deposition in Interior spruce somatic embryos. In Vitro Cell Dev Biol Plant 33(3):236–239

    Article  CAS  Google Scholar 

  • Carrier DJ, Cunningham JE, Taylor DC, Dunstan DI (1997b) Sucrose requirements and lipid utilization during germination of interior spruce (Picea glauca engelmannii complex) somatic embryos. Plant Cell Rep 16(8):550–554. doi:10.1007/s002990050277

    CAS  Google Scholar 

  • Castro J, Reich PB, Sanchez-Miranda A, Guerrero JD (2008) Evidence that the negative relationship between seed mass and relative growth rate is not physiological but linked to species identity: a within-family analysis of Scots pine. Tree Physiol 28:1077–1082

    Article  PubMed  Google Scholar 

  • Cheliak WM, Rogers DL (1990) Integrating biotechnology into tree improvement programs. Can J For Res 20(4):452–463. doi:10.1139/x90-062

    Article  Google Scholar 

  • Colas F, Lamhamedi MS (2009) Integration of somatic clones in seed orchard management and the production of a new generation of seeds with a high genetic value. Tree Seed Work Group News Bulletin 50:27–31

    Google Scholar 

  • Colas F, Lamhamedi MS (2010) Floraison précoce et production de graines par des clones somatiques d’épinette noire (Picea mariana): intégration potentielle dans le programme d’amélioration génétique et l’aménagement des vergers à graines. Can J For Res 40(7):1421–1433

    Article  Google Scholar 

  • Colas F, Mercier S (2000) Évaluation et maintien de la viabilité des pollens utilisés dans le programme d’amélioration des arbres. Gouvernement du Québec, Ministère des Ressources naturelles, Forêt Québec, Direction de la Recherche Forestière, Sainte-Foy. Mémoire de recherche forestière 135. 78 p

  • Czabator FJ (1962) Germination value: an index combining speed and completeness of pine seed germination. For Sci 8(4):386–396

    Google Scholar 

  • Desponts M, Numainville G (2013) L’amélioration génétique de l’épinette noire au Québec. Bilan et perspectives. Gouvernement du Québec, ministère des Ressources naturelles, Direction de la recherche forestière, Québec. Mémoire de recherche forestière 169. 42 p

  • El Meskaoui A, Desjardins Y, Tremblay FM (2000) Kinetics of ethylene biosynthesis and its effects during maturation of white spruce somatic embryos. Physiol Plantarum 109:333–342

    Article  Google Scholar 

  • Girard D, Gagnon J, Langlois C-G (2001) Plantec: un logiciel pour gérer la fertilisation des plants dans les pépinières forestières. Gouvernement du Québec, Ministère des Ressources naturelles, Direction de la recherche forestière. Note de recherche forestière 111. 8 p

  • Greenwood MS (1995) Juvenility and maturation in conifers: current concepts. Tree Physiol 15(7–8):433–438. doi:10.1093/treephys/15.7-8.433

    Article  PubMed  Google Scholar 

  • Grossnickle S (2000) Ecophysiology of northern spruce species. The performance of planted seedlings. National Research Council of Canada, Canada, 407 p

  • Hagman M (1975) Incompatibility in forest trees. Proc Royal Soc Lond Ser B 188:313–326

    Article  Google Scholar 

  • Harper JL, Lovell PH, Moore KG (1970) The shapes and sizes of seeds. Ann Rev Ecol Syst 1(1):327–356. doi:10.1146/annurev.es.01.110170.001551

    Article  Google Scholar 

  • Helmersson A, Jansson G, Bozhkov PV, Von Arnold S (2008) Genetic variation in microsatellite stability of somatic embryo plants of Picea abies: a case study using six unrelated full-sib families. Scand J For Res 23(1):2–11

    Article  Google Scholar 

  • Ho RH (1991) A guide to pollen—and seed-cone morphology of black spruce, white spruce, jack pine and eastern white pine for controlled pollination. Forest Research Report 125. Ministry of Natural Resources, Ontario Forest Research Institute, Sault Sainte-Marie, Ont. 31 p

  • Högberg K-A, Ekberg J, Norell L, von Arnold S (1998) Intergration of somatic embryogenesis in a tree breeding programme: a case study with Picea abies. Can J For Res 28(10):1536–1545

    Article  Google Scholar 

  • Iraqi D, Tremblay FM (2001) The role of sucrose during maturation of black spruce [Picea mariana (Mill.) BSP] and white spruce [Picea glauca (Moench) Voss] somatic embryos. Physiol Plantarum 111(3):381–388

    Article  CAS  Google Scholar 

  • ISTA (2012) International Rules for Seed testing. Bassersdorf (Switzerland)

  • Klimaszewska K, Ward C, Cheliak WM (1992) Cryopreservation and plant regeneration from embryogenic cultures of larch (Larix x eurolepis) and black spruce (Picea mariana). J Exp Botany 43(246):73–79

    Article  CAS  Google Scholar 

  • Lamhamedi MS, Bernier PY (1994) Ecophysiology and field performance of black spruce (Picea mariana): a review. Ann Sci For 51:529–551

    Article  Google Scholar 

  • Lamhamedi MS, Chamberland H, Bernier PY, Tremblay FM (2000) Clonal variation in morphology, growth, physiology, anatomy and ultrastructure of container-grown white spruce somatic plants. Tree Physiol 20:869–880

    Article  CAS  PubMed  Google Scholar 

  • Lamhamedi MS, Chamberland H, Tremblay FM (2003a) Epidermal transpiration, ultrastructural characteristics and net photosynthesis of white spruce somatic seedlings in response to in vitro acclimatization. Physiol Plantarum 118:554–561

    Article  CAS  Google Scholar 

  • Lamhamedi MS, Margolis HA, Renaud M, Veilleux L, Auger I (2003b) Effets de différentes régies d’irrigation sur la croissance, la nutrition minérale et le lessivage des éléments nutritifs des semis d’épinette noire (1 + 0) produits en récipients à parois ajourées en pépinière forestière. Can J For Res 33:279–291

    Article  CAS  Google Scholar 

  • Lamhamedi MS, Labbé L, Margolis HA, Stowe DC, Blais L, Renaud M (2006) Spatial variability of substrate water content and growth of white spruce seedlings. Soil Sci Soc Am J 70:108–120

    Article  CAS  Google Scholar 

  • Langlois C-G, Gagnon J (1993) A global approach to mineral nutrition based on the growth needs of seedlings produced in forest tree nurseries. In: Barrow NJ (ed) Plant nutrition—from genetic engineering to field practice, 1993. Kluwer Academic Publishers, Dordrecht, pp 303–306

    Chapter  Google Scholar 

  • MacKay J, Boyle B, El Kayal W, Namroud MC, Doerksen T, Cooke J, Isabel N, Beaulieu J, Rigault P, Bicho P, Bousquet J (2011) Gene mapping in white spruce (P. glauca): QTL and association studies integrating population and expression data. BMC Proceedings 5 (Suppl 7):I6

  • Nanson A (2004) Génétique et amélioration des arbres forestiers. Les Presses Agronomiques de Gembloux, Gembloux (Belgique). 712 p

  • Parent B (2008) Aménagement forestier—Production de plants (chapitre 5). In: Ministère des Ressources naturelles et de la Faune. Ressources et industries forestières—Portrait statistique—Édition 2008. Gouvernement du Québec, Québec, pp 05-05-01 à 05-06-34

  • Park YS, Barrett JD, Bonga JM (1998) Application of somatic embryogenesis in high-value clonal forestry: deployment, genetic control, and stability of cryopreserved clones. In Vitro Cell Dev Biol Plant 34(3):231–239

    Article  Google Scholar 

  • Pharis RP, Webber JE, Ross SD (1987) The promotion of flowering in forest trees by gibberellin A4/7 and cultural treatments: a review of the possible mechanisms. For Ecol Manag 19(1–4):65–84. doi:10.1016/0378-1127(87)90012-0

    Article  CAS  Google Scholar 

  • Powell GR (2007) Lives of conifers. A comparative account of the coniferous trees indigenous to northeastern North America. Fitzhenry and Whiteside Ltd, Markham. 276 p

  • Rink G, Dell TR, Switzer G, Bonner FT (1979) Use of the Weibull function to quantify sweetgum germination data. Silvae Genetica 28(1):9–12

    Google Scholar 

  • SAS Institute Inc. (2009) SAS/STAT® 9.2 User’s guide, Second Edition. Cary, NC (USA)

  • Scott RJ, Knott M (1974) A cluster analysis method for grouping means in the analysis of variance. Biometrics 30:507–512

    Article  Google Scholar 

  • Skeates DA, Haavisto VF (1995) Heavier black spruce seeds produce more vigorous seedlings. Technical note edn. Natural resources Canada, Canadian Forest Service-Ontario. Technical Note 31. 4 p

  • Team R (2012) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna (Austria)

    Google Scholar 

  • Thapliyal M, Singh O, Sah B, Bahar N (2008) Seed source variation and conservation of Pinus wallichiana in India. Ann For Res 51:81–88

    Google Scholar 

  • Tousignant D, Périnet P, Rioux M (1996) Black spruce cutting propagation at the Pépinière de Saint-Modeste. edn. Gouvernement du Québec, Ministère des Ressources naturelles. 33 p

  • Tremblay L, Tremblay FM (1995a) III. 14 Somatic embryogenesis in black spruce [Picea mariana (Mill.) B.S.P.] and red spruce (P. rubens Sarg.). In: Bajaj YPS (ed) Somatic embryogenesis and synthetic seed I—biotechnology in agriculture and forestry, vol 30. Springer, Berlin, Heidelberg, pp 431–445

  • Tremblay L, Tremblay FM (1995b) Maturation of black spruce somatic embryos: sucrose hydrolysis and resulting osmotic pressure of the medium. Plant Cell Tissue Organ Cult 42(1):39–46

    Article  CAS  Google Scholar 

  • Tremblay F-M, Iraqi D, El Meskaoui A (2005) Protocol of somatic embryogenesis: Black spruce (Picea mariana (Mill.) B.S.P.). In: Jain SM, Gupta PK (eds) Protocol for somatic embryogenesis in woody plants, vol 77. Forestry Sciences. Springer, Dordrecht, pp 59–68

  • Vagner M, Fischerova L, Spackova J, Vondrakova Z (2005) Somatic embryogenesis in Norway spruce. In: Jain SM, Gupta PK (eds) Protocol for somatic embryogenesis in woody plants, vol 77. Forestry Sciences. Springer, Dordrecht. pp 141-155

  • Veilleux P, Allard J-Y, Bart F, Boyer Groulx D, Gingras B-M, Labrecque D, Marchand P, Murray A (2013) Guide terrain. Inventaire de qualification des plants résineux cultivés en récipients. Document de travail, livraison 2013. Gouvernement du Québec, ministère des Ressources naturelles et de la Faune, Direction générale des pépinières et des stations piscicoles. 141 p

  • Viereck LA, Johnston WF (1990) Black spruce. Picea mariana (Mill.) B.S.P. In: Burns RM, Honkala BH (eds) Silvics of North America, Vol 1: conifers. Agriculture handbook 654. U.S Department of Agriculture, Forest Service, Washington DC (USA). 22 p

  • Villeneuve M (1999) Les programmes d’amélioration génétique: bilan des réalisations. L’épinette noire. In: L’amélioration génétique en foresterie: où en sommes-nous?, Rivière-du-Loup, Québec, 28–30 sept. 1999, pp 45–52

  • Wang BSP (1973) Laboratory germination criteria for red pine (Pinus resinosa Ait.) seed. Proc Assoc Off Seed Anal 63:94–101

    Google Scholar 

  • Wang BSP, Ackerman F (1983) A new germination box for tree seed testing. Environment Canada, Canadian Forestry Service, Petawawa National Forestry Institute. Information Report PI-X-27F. 15 p

  • Worthen L, Woeste K (2007) Male genotype influences seed set and seed size in controlled crosses of American Chestnut (Castanea dentata [Marsh] Borhk). In: 29th Southern Forest Tree Improvement Conference. Tree improvement in North America: Past, Present, and Future, Galveston (Texas, USA), June 19–22, 2007. pp 176–177

  • Xia Z, Zhai H, Liu B, Kong F, Yuan X, Wu H, Cober E, Harada K (2012) Molecular identification of genes controlling flowering time, maturity, and photoperiod response in soybean. Pl Syst Evol 298(7):1217–1227. doi:10.1007/s00606-012-0628-2

    Article  CAS  Google Scholar 

  • Yue D, Margolis HA (1993) Photosynthesis and dark respiration of black spruce cuttings in response to light and temperature. Can J For Res 23:1150–1155

    Article  Google Scholar 

  • Zimmerman RH (1972) Juvenility and flowering in woody plants: a review. HortScience 7(5):447–455

    Google Scholar 

  • Zobel B, Talbert J (1984) Applied forest tree improvement. Wiley, New York. 505 p

Download references

Acknowledgments

The authors wish to thank Mr. Carol Parent at the Direction de la recherche forestière (DRF) of the Ministère des Ressources naturelles (MRN) for the pollinations, the extraction and qualification of seeds. Many thanks go to Ms. Louise L’Heureux, Mr. Patrick Lemay and Mr. Michel Houle at the DRF for the seedling treatment, as well as Ms. Linda Veilleux, Ms. Maripierre Jalbert and Ms. Brigitte Boudreault at the DRF for the photomontage. We also thank Dr. Hank Margolis, the associate editor and the two anonymous reviewers for their valuable comments and suggestions. The authors thank the Saint-Modeste nursery (MRN) for the organization of work (Mr. Michel Rioux), pollen harvesting (Mr. Paul-Yvan Martin), and seedling production (Ms. Corine Rioux). Lastly, the authors thank Ms. Geneviève Picher and Ms. Jessica Bach from the DRF biometrics team for the statistical analyses and the DRF organic and inorganic chemistry laboratory staff for the mineral analyses of the substrates and seedlings produced during this experiment. This research work was completed as part of the 1120549-112310084 project funded by the DRF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Colas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Colas, F., Lamhamedi, M.S. Production of a new generation of seeds through the use of somatic clones in controlled crosses of black spruce (Picea mariana). New Forests 45, 1–20 (2014). https://doi.org/10.1007/s11056-013-9388-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11056-013-9388-2

Keywords

Navigation