Advertisement

Topographic Disorientation in Patients with Brain Damage

  • V. N. GrigoryevaEmail author
  • G. V. Tikhomirov
Article

This article describes the symptoms, pathogenesis, and variants of topographic disorientation. Methods for the diagnosis and rehabilitation of patients are presented. Studies have led to the conclusion that identification of the variant of topographic disorientation and determination of the strategy for compensating for this disorder have great importance for completing the neurorehabilitation of patients with stroke and other focal brain damage.

Keywords

topographic disorientation orientation landmarks allocentric and egocentric system rehabilitation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. Piccardi, F. Bianchini, O. Argento, et al., “The Walking Corsi Test (WalCT), standardization of the topographical memory test in an Italian population,” Neurol. Sci., 34, No. 6, 971–978 (2013),  https://doi.org/10.1007/s10072-012-1175-x.Google Scholar
  2. 2.
    S. Serino, P. Cipresso, F. Morganti, and G. Riva, “The role of egocentric and allocentric abilities in Alzheimer’s disease: a systematic review,” Ageing Res. Rev., 16, 32–44 (2014),  https://doi.org/10.1016/j.arr.2014.04.004.Google Scholar
  3. 3.
    M. L. Rusconi, A. Suardi, M. Zanetti, and L. Rozzini, “Spatial navigation in elderly healthy subjects, amnestic and non amnestic MCI patients,” J. Neurol. Sci., 360, No. 1–2, 430–437 (2015),  https://doi.org/10.1016/j.jns.2015.10.010.Google Scholar
  4. 4.
    G. K. Aguirre and M. D’Esposito, “Topographical disorientation: a synthesis and taxonomy,” Brain, 122, No. 9, 1613–1628 (1999),  https://doi.org/10.1093/brain/122.9.1613.Google Scholar
  5. 5.
    C. C. Guariglia and R. Nitrini, “Topographical disorientation in Alzheimer’s disease,” Arquivos De Neuro-Psiquiatria, 67, No. 4, 967–972 (2009),  https://doi.org/10.1093/acprof:oso/9780199210862.003.0009.Google Scholar
  6. 6.
    T. S. Lim, G. Iaria, and S. Y. Moon, “Topographical disorientation in mild cognitive impairment: a voxel-based morphometry study,” J. Clin. Neurol., 6, No. 4, 204–211 (2010),  https://doi.org/10.3988/jcn.2010.6.4.204.Google Scholar
  7. 7.
    S. E. Kober, G. Wood, D. Hofer, et al., “Virtual reality in neurologic rehabilitation of spatial disorientation,” J. Neuroeng. Rehabil., 10, No. 1, 17 (2013),  https://doi.org/10.1186/1743-0003-10-17.Google Scholar
  8. 8.
    M. Cogne, M. Taillade, B. N’Kaoua, et al., “The contribution of virtual reality to the diagnosis of spatial navigation disorders and to the study of the role of navigational aids: A systematic literature review,” Ann. Phys. Rehab. Med., 60, No. 3, 164–176 (2017),  https://doi.org/10.1016/j.rehab.2015.12.004.Google Scholar
  9. 9.
    M. Pařizková, R. Andel, O. Lerch, et al., “Homocysteine and real-space navigation performance among non-demented older adults,” J. Alzheimers Dis., 56, No. 3, 951–964 (2017),  https://doi.org/10.3233/jad-161667.Google Scholar
  10. 10.
    F. Bianchini, A. Di Vita, L. Palermo, et al., “A selective egocentric topographical working memory deficit in the early stages of Alzheimer’s disease: a preliminary study,” Am. J. Alzheimers Dis. Other Demen., 29, No. 8, 749–754 (2014),  https://doi.org/10.1177/1533317514536607.Google Scholar
  11. 11.
    F. Nemmi, M. Boccia, and C. Guariglia, “Does aging affect the formation of new topographical memories? Evidence from an extensive spatial training,” Neuropsychol. Dev. Cogn. B Aging Neuropsychol. Cogn., 6, 1–16 (2016),  https://doi.org/10.1080/13825695.2016.1167162.Google Scholar
  12. 12.
    V. Descloux and R. Maurer, “Cognitive map recall test: A new specific test to assess topographical disorientation,” Appl. Neuropsychol. Adult, 2, 1–19 (2016),  https://doi.org/10.1080/23279095.2016.1247094.Google Scholar
  13. 13.
    G. K. Aguirre, E. Zarahn, and M. D’Esposito, “Neural components of topographical representation,” Proc. Natl. Acad. Sci. USA, 95, No. 3, 839–846 (1998),  https://doi.org/10.1073/pnas.95.3.839.Google Scholar
  14. 14.
    G. Janzen and M. van Turennout, “Selective neural representation of objects relevant for navigation,” Nat. Neurosci., 7, No. 6, 673–677 (2004),  https://doi.org/10.1038/nn1258.Google Scholar
  15. 15.
    T. P. McNamara, J. Sluzenski, and B. Rump, “Human spatial memory and navigation,” in: Cognitive Psychology of Memory, H. L. Roediger (ed.), Elsevier, Oxford (2008).Google Scholar
  16. 16.
    E. Chan, O. Baumann, M. A. Bellgrove, and J. B. Mattingley, “From objects to landmarks: the function of visual location information in spatial navigation,” Front. Psychol., 3, 304 (2012),  https://doi.org/10.3389/fpsyg.2012.00304.
  17. 17.
    D. Waller and Y. Lippa, “Landmarks as beacons and associative cues: their role in route learning,” Mem. Cognit., 35, No. 5, 910–924 (2007),  https://doi.org/10.3759/BF03193465.Google Scholar
  18. 18.
    M. Lehnung, B. Leplow, L. Friege, et al., “Development of spatial memory and spatial orientation in preschoolers and primary school children,” Brit. J. Psychol., 89, No. 3, 463–480 (1998),  https://doi.org/10.1111/j.2044-8295.1998.tb02697.x.Google Scholar
  19. 19.
    D. A. Hamilton and R. J. Sutherland, “Blocking in human place learning: evidence from virtual navigation,” Psychobiology, 27, No. 4, 453–461 (1997),  https://doi.org/10.1016/s0166-4328(01)00343-6.Google Scholar
  20. 20.
    S. A. Lee, A. Shusterman, and E. S. Spelke, “Reorientation and landmark-guided search by young children: evidence for two systems,” Psychol. Sci., 17, No. 7, 587–592 (2006),  https://doi.org/10.1111/j.1467-9280.2006.01829.x.Google Scholar
  21. 21.
    A. R. Lew, “Looking beyond the boundaries: time to put landmarks back on the cognitive map?” Psychol. Bull., 137, No. 3, 484–507 (2011),  https://doi.org/10.1037/a0022315.Google Scholar
  22. 22.
    P. Jansen-Osmann and P. Fuchs, “Wayfinding behaviour and spatial knowledge of adults and children in a virtual environment: the role of landmarks,” J. Exp. Biol., 53, No. 3, 171–181 (2006),  https://doi.org/10.1027/1618-3169.53.3.171.Google Scholar
  23. 23.
    A. L. Shelton and T. P. McNamara, “Systems of spatial reference in human memory,” Cogn. Psychol., 43, No. 4, 274–310 (2001),  https://doi.org/10.1006/cogp.2001.0759.Google Scholar
  24. 24.
    N. Takahashi, M. Kawamura, J. Shiota, et al., “Pure topographic disorientation due to right retrosplenial lesion,” Neurology, 49, No. 2, 464–469 (1997),  https://doi.org/10.1212/wnl.49.2.464.Google Scholar
  25. 25.
    A. R. Luriya, Basic Neuropsychology, Moscow University Press, Moscow (1973).Google Scholar
  26. 26.
    E. C. Tolman, “Cognitive maps in rats and men,” Psychol. Rev., 56, No. 4, 189–208 (1948),  https://doi.org/10.1037/h0061626.Google Scholar
  27. 27.
    R. A. Andersen, L. H. Snyder, D. C. Bradley, and J. Xing, “Multimodal representation of space in the posterior parietal cortex and its use in planning movements,” Ann. Rev. Neurosci., 20, No. 1, 303–330 (1997),  https://doi.org/10.1146/annurev.neuro.20.1.303.Google Scholar
  28. 28.
    M. Mishkin, L. G. Ungerleider, and K. A. Macko, “Object vision and spatial vision: two cortical pathways,” Trends Neurosci., 6, 414–417 (1983),  https://doi.org/10.1016/0166-2236(83)90190-x.Google Scholar
  29. 29.
    T. Manly and J. B. Mattingley, “Visuospatial and attentional disorders,” in: Clinical Neuropsychology. A Practical Guide to Assessment and Management for Clinicians, L. H. Goldstein and J. E. McNeil (eds.), John Wiley & Sons (2004).Google Scholar
  30. 30.
    A. D. Milner and M. A. Goodale, “Two visual systems re-viewed,” Neuropsychologia, 46, No. 3, 774–785 (2008),  https://doi.org/10.1016/j.neuropsychologia.2007.10.005.Google Scholar
  31. 31.
    V. D. Bohbot, G. Iaria, and M. Petrides, “Hippocampal function and spatial memory: Evidence from functional neuroimaging in healthy participants and performance of patients with medial temporal lobe resections,” Neuropsychology, 18, No. 3, 418–425 (2004),  https://doi.org/10.1037/0894-4105.18.3.418.Google Scholar
  32. 32.
    D. M. Parslow, D. Rose, B. Brooks, et al., “Allocentric spatial memory activation of the hippocampal formation measured with fMRI,” Neuropsychology, 18, No. 3, 450–461 (2004),  https://doi.org/10.1037/0894-4105.18.3.450.Google Scholar
  33. 33.
    E. Ciaramelli, R. S. Rosenbaum, S. Solcz, et al., “Mental space travel: damage to posterior parietal cortex prevents egocentric navigation and reexperiencing of remote spatial memories,” J. Exp. Psychol. Learn Mem. Cogn, 36, No. 3, 619–634 (2010),  https://doi.org/10.1037/a0019181.Google Scholar
  34. 34.
    C. Barry and N. Burgess, “Neural mechanisms of self-location,” Curr. Biol., 24, No. 8, 330–339 (2014),  https://doi.org/10.1016/j.cub.2014.02.049.Google Scholar
  35. 35.
    M. Boccia, F. Nemmi, and C. Guariglia, “Neuropsychology of environmental navigation in humans: review and meta-analysis of FMRI studies in healthy participants,” Neuropsychol. Rev., 24, No. 2, 236–251 (2014),  https://doi.org/10.1007/s11065-014-9247-8.Google Scholar
  36. 36.
    O. S. Levin, Diagnosis and Treatment of Dementia in Clinical Practice, MEDpress-inform (2008).Google Scholar
  37. 37.
    E. D. Khomskaya, Neuropsychology: Textbook, Piter, St. Petersburg (2003).Google Scholar
  38. 38.
    A. M. Whiteley and E. K. Warrington, “Selective impairment of topographical memory: a single case study,” J. Neurol. Neurosurg. Psychiatr., 41, No. 6, 585–588 (1978),  https://doi.org/10.1136/jnnp.41.6.585.Google Scholar
  39. 39.
    T. Landis, J. L. Cummings, D. F. Benson, and E. P. Palmer, “Loss of topographic familiarity. An environmental agnosia,” Arch. Neurol., 43, No. 2, 132–136 (1986),  https://doi.org/10.1093/neucas/2.6.521-r.Google Scholar
  40. 40.
    K. Suzuki, “Symptoms and lesion localization in visual agnosia,” Rinsho Shinkeigaku, 44, No. 11, 842–844 (2004).Google Scholar
  41. 41.
    R. Hashimoto, N. Komori, and M. Abe, “Heading disorientation after right posteromedial infarction,” Case Rep. Neurol. Med., 2015, 1–6 (2015),  https://doi.org/10.1156/2015/396802.Google Scholar
  42. 42.
    R. Hashimoto, Y. Tanaka, and I. Nakano, “Heading disorientation: a new test and a possible underlying mechanism,” Eur. Neurol., 63, No. 2, 87–93 (2010),  https://doi.org/10.1160/000276398.Google Scholar
  43. 43.
    R. Hashimoto, M. Uechi, W. Yumura, et al., “Egocentric disorientation and heading disorientation: evaluation by a new test named card placing test,” Rinsho Shinkeigaku, 57, No. 12, 837–845 (2016),  https://doi.org/10.5792/clinicalneurol.cn-000905.Google Scholar
  44. 44.
    M. Habib and A. Sirigu, “Pure topographical disorientation: a definition and anatomical basis,” Cortex, 23, No. 1, 73–85 (1987),  https://doi.org/10.1016/s0010-9452(87)80020-5.Google Scholar
  45. 45.
    R. A. Epstein, K. S. Graham, and P. E. Downing, “Viewpoint specific scene representations in human parahippocampal cortex,” Neuron, 37, No. 5, 865–876 (2003),  https://doi.org/10.1016/s0896-6273(03)00117-x.Google Scholar
  46. 46.
    V. R. Schinazi and R. A. Epstein, “Neural correlates of real-world route learning,” Neuroimage, 53, No. 2, 725–735 (2010),  https://doi.org/10.1016/j.neuroimage.2010.06.065.Google Scholar
  47. 47.
    R. A. McCarthy, “Topographic amnesia: spatial memory disorder, perceptual dysfunction, or category specific semantic memory impairment?” J. Neurol. Neurosurg. Psychiatr., 2, No. 6, 521–540 (1996),  https://doi.org/10.1093/neucas/2.6.521-v.Google Scholar
  48. 48.
    V. Bellassen, K. Igloi, L. C. de Souza, et al., “Temporal order memory assessed during spatiotemporal navigation as a behavioral cognitive marker for differential Alzheimer’s disease diagnosis,” J. Neurosci., 32, No. 6, 1942–1952 (2012),  https://doi.org/10.1523/Jneurosci.4567-11.2012.Google Scholar
  49. 49.
    M. Hegarty, D. R. Montello, A. E. Richardson, et al., “Spatial abilities at different scales: Individual differences in aptitude-test performance and spatial-layout learning,” Intelligence, 34, No. 2, 151–176 (2006),  https://doi.org/10.1016/j.intell.2005.09.005.Google Scholar
  50. 50.
    J. D. Feigenbaum and R. G. Morris, “Allocentric versus egocentric spatial memory after unilateral temporal lobectomy in humans,” Neuropsychology, 18, No. 3, 462–472 (2004),  https://doi.org/10.1037/0894-4105.18.3.462.supp.Google Scholar
  51. 51.
    F. Morganti, S. Stefanini, and G. Riva, “From allo- to egocentric spatial ability in early Alzheimer’s disease: a study with virtual reality spatial tasks,” Cogn. Neurosci., 4, No. 3–4, 171–180 (2013),  https://doi.org/10.1080/17598928.2013.854762.Google Scholar
  52. 52.
    M. Cogné, J. F. Knebel, E. Klinger, et al., “The effect of contextual auditory stimuli on virtual spatial navigation in patients with focal hemispheric lesions,” Neuropsychol. Rehabil., 6, 1–16 (2016),  https://doi.org/10.1080/09612011.2015.1127261.Google Scholar
  53. 53.
    E. Klinger, I. Chemin, S. Lebreton, and R. M. Marie, “Virtual action planning in Parkinson’s disease: a control study,” Cyberpsychol. Behav., 9, No. 3, 342–347 (2006),  https://doi.org/10.1089/cpb.2006.9.342.Google Scholar
  54. 54.
    V. Descloux, A. Bellmann, and R. Maurer, “Assessment of topographical disorientation: First application of new tests and case report,” Appl. Neuropsychol. Adult, 22, No. 5, 373–380 (2015),  https://doi.org/10.1080/23279095.2014.940525.Google Scholar
  55. 55.
    V. Descloux and R. Maurer, “Assessing mental imagery to evaluate topographical disorientation: group study and preliminary normative data,” Appl. Neuropsychol. Adult, 23, No. 1, 1–10 (2015),  https://doi.org/10.1080/23279095.2014.968920.Google Scholar
  56. 56.
    A. O. Caffo, F. Hoogeveen, M. Groenendaal, et al., “Comparing two different orientation strategies for promoting indoor traveling in people with Alzheimer’s disease,” Res. Dev. Disabil., 35, No. 2, 582–590 (2014),  https://doi.org/10.1016/j.ridd.2013.12.003.Google Scholar
  57. 57.
    K. S. McGilton, T. M. Rivera, and P. Dawson, “Can we help persons with dementia find their way in a new environment?” Aging Ment. Health, 7, No. 5, 363–371 (2003),  https://doi.org/10.7748/nop.15.8.8.s11.Google Scholar
  58. 58.
    V. Provencher, N. Bier, T. Audet, and L. Gagnon, “Errorless-based techniques can improve route finding in early Alzheimer’s disease: a case study,” Am. J. Alzheimers Dis. Other Demen., 23, No. 1, 47–57 (2008),  https://doi.org/10.1177/1533317507307228.Google Scholar
  59. 59.
    G. E. Lancioni, N. N. Singh, M. F. O’Reilly, et al., “Supporting daily activities and indoor travel of persons with moderate Alzheimer’s disease through standard technology resources,” Res. Dev. Disabil., 34, No. 8, 2351–2360 (2013),  https://doi.org/10.1016/j.ridd.2013.04.020.Google Scholar
  60. 60.
    L. Bouwmeester, A. van de Wege, R. Haaxma, and J. W. Snoek, “Rehabilitation in a complex case of topographical disorientation,” Neuropsychol. Rehabil., 25, No. 1, 1–14 (2015),  https://doi.org/10.1080/09612011.2014.923318.Google Scholar
  61. 61.
    B. M. Brooks, J. E. McNeil, F. D. Rose, et al., “Route learning in a case of amnesia: a preliminary investigation into the efficacy of training in a virtual environment,” Neuropsychol. Rehabil., 9, No. 1, 63–76 (1999),  https://doi.org/10.1080/713756599.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Nizhnii Novgorod State Medical AcademyRussian Ministry of HealthNizhnii NovgorodRussia

Personalised recommendations