Advertisement

Quantitative Evaluation of Links between Inflammatory Markers and Alzheimer’s Disease

  • A. N. SimonovEmail author
  • T. P. Klyushnik
  • L. V. Androsova
  • N. M. Mikhaylova
Article
  • 1 Downloads

Objectives. To obtain quantitative assessment of the link between Alzheimer’s disease (AD) and inflammatory markers such as the enzymatic activity of leukocyte elastase (LE) and the functional activity of α1-proteinase inhibitor (α1-PI) using a logistical regression model, which was then applied to predicting the probability of AD in patients with mild cognitive impairment syndrome (MCI). Materials and methods. Mathematical analysis was run using a database containing the results of measurements of these immunological parameters (enzymatic activity of LE and functional activity of α1-PI) in the plasma of 91 patients with verified diagnoses of AD on in-patient or out-patient treatment and 37 healthy subjects of comparable age without clinical indications of somatic or mental pathology. Results and conclusions. A logistical regression model was constructed linking LE and α1-PI with the probability that a patient has AD. The model has favorable statistical properties and high predictive effectiveness. These results allow individual patients’ LE and α1-PI values to be used to generate quantitative probabilities that patients have AD.

Keywords

Alzheimer’s disease mild cognitive impairment leukocyte elastase α1-proteinase inhibitor logistical regression 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. S. Albert, S. T. DeKosky, D. Dickson, et al., “The diagnosis of mild cognitive impairment due to Alzheimer’s disease: recommendations from the National Institute on Aging – Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease,” Alzheimers Dement., 7, 270–279 (2011),  https://doi.org/10.1016/j.jalz.2011.03.008.
  2. 2.
    F. Licastro, S. Pedrini, L. Caputo, et al., “Increased plasma levels of interleukin-1, interleukin-6 and alpha-1-antichymotrypsin in patients with Alzheimer’s disease: peripheral inflammation or signals from the brain?” J. Neuroimmunol., 103, No. 1, 97–102 (2000).CrossRefGoogle Scholar
  3. 3.
    M. T. Schram, S. M. Euser, A. J. de Craen, et al., “Systemic markers of inflammation and cognitive decline in old age,” J. Am. Geriatr. Soc., 55, No. 5, 708–716 (2007),  https://doi.org/10.1111/j.1532-5415.2007.01159.x.CrossRefGoogle Scholar
  4. 4.
    C. Holmes, C. Cunningham, E. Zotova, et al., “Proinflammatory cytokines, sickness behavior, and Alzheimer disease,” Neurology, 77, No. 3, 212–218 (2011),  https://doi.org/10.1212/WNL.0b013e318225ae07.CrossRefGoogle Scholar
  5. 5.
    V. R. Varma, S. Varma, Y. An, et al., “Alpha-2 macroglobulin in Alzheimer’s disease: a marker of neuronal injury through the RCAN1 pathway,” Mol. Psychiatry, 22, No. 1, 13–23 (2017),  https://doi.org/10.1038/mp.2016.206.CrossRefGoogle Scholar
  6. 6.
    M. T. Schram, S. M. Euser, A. J. de Craen, et al., “Systemic markers of inflammation and cognitive decline in old age,” J. Am. Geriatr. Soc., 55, No. 5, 708–716 (2007),  https://doi.org/10.1111/j.1532-5415.2007.01159.x.CrossRefGoogle Scholar
  7. 7.
    P. Komulainen, T. A. Lakka, M. Kivipelto, et al., “Serum high sensitivity C-reactive protein and cognitive function in elderly women,” Age Ageing, 36, No. 4, 443–448 (2007).CrossRefGoogle Scholar
  8. 8.
    L. V. Androsova, N. M. Mikhailova, S. A. Zozulya, et al., “Inflammatory markers in Alzheimer’s disease and vascular dementia,” Zh. Nevrol. Psikhiat., 113, 2:49-53 (2013).Google Scholar
  9. 9.
    T. P. Klyushnik, L. V. Androsova, N. M. Mikhailova, et al., “Potential markers for Alzheimer’s disease associated with inflammation,” Psikhiatriya, 61, No. 01, 26–32 (2014).Google Scholar
  10. 10.
    L. Androsova, N. Mikhaylova, S. Zozulya, et al., “A comparative study of innate immunity markers in Alzheimer’s disease, mixed dementia and vascular dementia,” Int. J. Clin. Neurosci. Mental Health, 3, Suppl. 1, 3 (2016), 10.21035/ijcnmh.2016.3(Suppl.1).S03.Google Scholar
  11. 11.
    D. Ashby, C. R. West, and D. Ames, “The ordered logistic regression model in psychiatry: rising prevalence of dementia in old people’s homes,” Stat. Med., 8, No. 11, 1317–1326 (1989),  https://doi.org/10.1002/sim.4780081104.CrossRefGoogle Scholar
  12. 12.
    J. L. Fleiss, J. B. Williams, and A. F. Dubro, “The logistic regression analysis of psychiatric data,” J. Psychiatr. Res., 20, No. 3, 195–209 (1986),  https://doi.org/10.1016/0022-3956(86)90003-8.CrossRefGoogle Scholar
  13. 13.
    D. W. Hosmer and S. Lemeshow, Applied Logistic Regression, Wiley-Interscience, New York (1989),  https://doi.org/10.1002/0471722146.

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • A. N. Simonov
    • 1
    Email author
  • T. P. Klyushnik
    • 1
  • L. V. Androsova
    • 1
  • N. M. Mikhaylova
    • 1
  1. 1.Scientific Center for Mental HealthMoscowRussia

Personalised recommendations